login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A097075
Expansion of g.f. (1-x-x^2)/(1-x-3*x^2-x^3).
7
1, 0, 2, 3, 9, 20, 50, 119, 289, 696, 1682, 4059, 9801, 23660, 57122, 137903, 332929, 803760, 1940450, 4684659, 11309769, 27304196, 65918162, 159140519, 384199201, 927538920, 2239277042, 5406093003, 13051463049, 31509019100, 76069501250
OFFSET
0,3
COMMENTS
Counts closed walks of length n at a vertex of a triangle, to which a loop has been added at one of the other vertices.
a(n) is the top left entry of the n-th power of the 3 X 3 matrix [0, 1, 1; 1, 1, 1; 1, 1, 0] or of the 3 X 3 matrix [0, 1, 1; 1, 0, 1; 1, 1, 1].
LINKS
J. Bodeen, S. Butler, T. Kim, X. Sun, and S. Wang, Tiling a strip with triangles, El. J. Combinat. 21 (1) (2014) P1.7.
FORMULA
a(n) = ((1+sqrt(2))^n + (1-sqrt(2))^n + 2*(-1)^n)/4.
a(n) = a(n-1) + 3*a(n-2) + a(n-3).
a(n) = (1/2)*((-1)^n + Sum_{k=0..floor(n/2)} binomial(n, 2*k)*2^k).
a(n) = ((-1)^n + A001333(n))/2.
E.g.f.: (cosh(x) + exp(x)*cosh(sqrt(2)*x) - sinh(x))/2. - Stefano Spezia, Mar 31 2024
MATHEMATICA
LinearRecurrence[{1, 3, 1}, {1, 0, 2}, 41] (* or *) Table[(LucasL[n, 2] +2*(-1)^n)/4, {n, 0, 40}] (* G. C. Greubel, Aug 18 2022 *)
PROG
(PARI) Vec((1-x-x^2)/(1-x-3*x^2-x^3) + O(x^50)) \\ Michel Marcus, Mar 25 2014
(Magma) [(Evaluate(DicksonFirst(n, -1), 2) +2*(-1)^n)/4: n in [0..40]]; // G. C. Greubel, Aug 18 2022
(SageMath) [(lucas_number2(n, 2, -1) +2*(-1)^n)/4 for n in (0..40)] # G. C. Greubel, Aug 18 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jul 22 2004
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy