OFFSET
0,2
COMMENTS
Number of occurrences of letter 2 in the (n+1)-st Peano word.
In binary representation, a leading one followed by n zeros then by n ones. - Reinhard Zumkeller, Feb 07 2006
The number of involutions in group G_n G_{n+1} = G_n(operation) D_8. For example, Q_8->1 involution; D_8->5 involutions - Roger L. Bagula, Aug 08 2007
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..170
A. M. Cohen and D. E. Taylor, On a Certain Lie Algebra Defined By a Finite Group, American Mathematical Monthly, volume 114, number 7, August-September 2007, pages 633-638. Also preprint. a(n) = t_n in proof of theorem 6.2.
Sergey Kitaev and Toufik Mansour, The Peano curve and counting occurrences of some patterns, arXiv:math/0210268 [math.CO], 2002. Section 3 lemma 1, d_2^n = a(n-1).
Sergey Kitaev, Toufik Mansour, and Patrice Séébold, Generating the Peano curve and counting occurrences of some patterns, Journal of Automata, Languages and Combinatorics, volume 9, number 4, 2004, pages 439-455. Also at ResearchGate. Section 4, |P_n|_r = a(n-1).
Index entries for linear recurrences with constant coefficients, signature (7,-14,8).
FORMULA
a(n) = A063376(n)-1.
a(n) = A020522(n) + A000225(n+1) = A083420(n) - A020522(n); A000120(a(n)) = n+1; A023416(a(n))=n; A070939(a(n)) = 2*n+1; 2*A020522(n)+1 = A030101(a(n)). - Reinhard Zumkeller, Feb 07 2006
a(n) = 2^(2*n-1) + 2*a(n-1) + 1. - Roger L. Bagula, Aug 08 2007
From Mohammad K. Azarian, Jan 15 2009: (Start)
G.f.: 1/(1-4*x) + 1/(1-2*x) - 1/(1-x).
E.g.f.: e^(4*x) + e^(2*x) - e^x. (End)
a(n) = A279396(n+4, 4). - Wolfdieter Lang, Jan 10 2017
EXAMPLE
n=5: a(5)=4^5+2^5-1=1024+32-1=1055 -> '10000011111'.
MATHEMATICA
LinearRecurrence[{7, -14, 8}, {1, 5, 19}, 30] (* Harvey P. Dale, Sep 06 2015 *)
PROG
(Magma) [4^n + 2^n - 1: n in [0..60]]; // Vincenzo Librandi, Apr 26 2011
(PARI) a(n)=4^n+2^n-1; \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, Oct 20 2004
STATUS
approved