OFFSET
0,1
COMMENTS
Equals Integral_{u=0..1} (u - log(u) - 1)/((1 + u)*(log(u))^2). (Let u = x*y and v = y, and integrate w.r.t. v.) - Petros Hadjicostas, Jun 13 2020
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..5000
Jonathan Sondow, Double Integrals for Euler's Constant and ln(4/Pi) and an Analog of Hadjicostas's Formula, arXiv:math/0211148 [math.CA], 2002-2004.
Jonathan Sondow, Double Integrals for Euler's Constant and ln(4/Pi) and an Analog of Hadjicostas's Formula, Amer. Math. Monthly 112 (2005), 61-65.
Eric Weisstein's World of Mathematics, Hadjicostas's Formula.
FORMULA
Log[(Sqrt[Pi]*Glaisher^6)/(2^(7/6)*E)].
EXAMPLE
0.256220094...
MATHEMATICA
RealDigits[Log[(Sqrt[Pi]*Glaisher^6)/(2^(7/6)*E)], 10, 50][[1]] (* G. C. Greubel, Mar 16 2017 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Jan 23 2005
STATUS
approved