login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

The (1,1)-entry of the matrix M^n, where M is the 5 X 5 matrix [[0,1,0,0,0],[0,0,1,0,0], [0,0,0,1,0], [0,0,0,0,1], [1,0,-1,1,1]].
18

%I #27 Sep 08 2022 08:45:18

%S 0,0,0,0,1,1,2,2,3,4,6,9,13,19,27,39,56,81,117,169,244,352,508,733,

%T 1058,1527,2204,3181,4591,6626,9563,13802,19920,28750,41494,59887,

%U 86433,124746,180042,259849,375032,541272,781201,1127483,1627261,2348575

%N The (1,1)-entry of the matrix M^n, where M is the 5 X 5 matrix [[0,1,0,0,0],[0,0,1,0,0], [0,0,0,1,0], [0,0,0,0,1], [1,0,-1,1,1]].

%C Also the (1,2)-entries of M^n (n >= 1).

%C Characteristic polynomial of the matrix M is x^5 - x^4 - x^3 + x^2 - 1.

%H G. C. Greubel, <a href="/A107293/b107293.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1,0,1).

%F a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-5) for n >= 5.

%F O.g.f: x^4/(1 - x - x^2 + x^3 - x^5). - _R. J. Mathar_, Dec 02 2007

%p a[0]:=0:a[1]:=0:a[2]:=0:a[3]:=0:a[4]:=1: for n from 5 to 45 do a[n]:=a[n-1]+a[n-2]-a[n-3]+a[n-5] od: seq(a[n],n=0..45);

%t LinearRecurrence[{1,1,-1,0,1}, {0,0,0,0,1}, 50] (* _G. C. Greubel_, Nov 03 2018 *)

%o (PARI) m=50; v=concat([0,0,0,0,1], vector(m-5)); for(n=6, m, v[n] = v[n-1] +v[n-2] -v[n-3] +v[n-5]); v \\ _G. C. Greubel_, Nov 03 2018

%o (Magma) I:=[0,0,0,0,1]; [n le 5 select I[n] else Self(n-1) +Self(n-2) -Self(n-3) + Self(n-5): n in [1..50]]; // _G. C. Greubel_, Nov 03 2018

%K nonn,easy

%O 0,7

%A _Roger L. Bagula_, Jun 08 2005

%E Edited by _N. J. A. Sloane_, May 12 2006

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy