login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A109502
Array read by antidiagonals: T(m,n) is the number of closed walks of length n on the complete graph on m nodes, m >= 1, n >= 0.
5
1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 0, 1, 0, 3, 2, 1, 0, 1, 0, 4, 6, 6, 0, 0, 1, 0, 5, 12, 21, 10, 1, 0, 1, 0, 6, 20, 52, 60, 22, 0, 0, 1, 0, 7, 30, 105, 204, 183, 42, 1, 0, 1, 0, 8, 42, 186, 520, 820, 546, 86, 0, 0, 1, 0, 9, 56, 301, 1110, 2605, 3276, 1641, 170, 1, 0
OFFSET
1,13
LINKS
FORMULA
T(m,n) = ((m-1)^n + (m-1)(-1)^n)/m.
G.f.: T(m, n) = [z^n](1 - (m-2)z)/(1 - (m-2)z - (m-1)z^2).
From Peter Bala, May 29 2024: (Start)
Binomial transform of the m-th row: Sum_{k = 0..n} binomial(n, k)*T(m, k) = m^(n-1) for n >= 1.
Let R(m, x) denote the g.f. of the m-th row of the square array. Then R(m_1, x) o R(m_2, x) = R(m_1*m_2, x), where o denotes the black diamond product of power series as defined by Dukes and White. Cf. A062160.
T(m_1*m_2, n) = Sum_{k = 0..n} Sum_{i = k..n} binomial(n, k)*binomial(n-k, i-k)*T(m_1, i)*T(m_2, n-k). (End)
EXAMPLE
Array begins:
m\n| 0 1 2 3 4 5 6 7 8 9 10
---+------------------------------------------------------------
1 | 1 0 0 0 0 0 0 0 0 0 0
2 | 1 0 1 0 1 0 1 0 1 0 1
3 | 1 0 2 2 6 10 22 42 86 170 342
4 | 1 0 3 6 21 60 183 546 1641 4920 14763
5 | 1 0 4 12 52 204 820 3276 13108 52428 209716
6 | 1 0 5 20 105 520 2605 13020 65105 325520 1627605
7 | 1 0 6 30 186 1110 6666 39990 239946 1439670 8638026
8 | 1 0 7 42 301 2100 14707 102942 720601 5044200 35309407
9 | 1 0 8 56 456 3640 29128 233016 1864136 14913080 119304648
10 | 1 0 9 72 657 5904 53145 478296 4304673 38742048 348678441
MAPLE
T := proc(m, n); ((m-1)^n + (m-1)*(-1)^n)/m end:
seq(print(seq(T(m, n), n = 0..10)), m = 1..10); # Peter Bala, May 30 2024
CROSSREFS
KEYWORD
nonn,easy,tabl
AUTHOR
Mitch Harris, Jun 30 2005
EXTENSIONS
Corrected by Franklin T. Adams-Watters, Sep 18 2006
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy