login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A110667
Sequence is {a(2,n)}, where a(m,n) is defined at sequence A110665.
6
0, 1, 2, 0, -6, -12, -12, -5, 2, 0, -12, -24, -24, -11, 2, 0, -18, -36, -36, -17, 2, 0, -24, -48, -48, -23, 2, 0, -30, -60, -60, -29, 2, 0, -36, -72, -72, -35, 2, 0, -42, -84, -84, -41, 2, 0, -48, -96, -96, -47, 2, 0, -54, -108, -108, -53, 2, 0, -60, -120, -120, -59, 2, 0, -66, -132, -132, -65, 2, 0, -72, -144, -144, -71, 2, 0
OFFSET
0,3
LINKS
FORMULA
Conjecture: g.f.: -x*(-1+2*x) / ( (x-1)^2*(x^2-x+1)^2 ). - R. J. Mathar, Oct 09 2013
EXAMPLE
a(0,n): 0, 1, 0, -3, -4, ...
a(1,n): 0, 1, 1, -2, -6, ...
a(2,n): 0, 1, 2, 0, -6, ...
a(3,n): 0, 1, 3, 3, -3, ...
a(4,n): 0, 1, 4, 7, 4, ...
Main diagonal of array is 0, 1, 2, 3, 4, ...
MAPLE
A11066x := proc(mmax, nmax) local a, i, j ; a := array(0..mmax, 0..nmax) ; a[0, 0] := 0 ; for i from 1 to nmax do a[0, i] := i-sum(binomial(2*i-k-1, i-1)*a[0, k], k=0..i-1) : od ; for j from 1 to mmax do a[j, 0] := 0 ; for i from 1 to nmax do a[j, i] := a[j-1, i]+a[j, i-1] ; od ; od ; RETURN(a) ; end :
nmax := 100 : m := 2: a := A11066x(m, nmax) :
for n from 0 to nmax do printf("%d, ", a[m, n]) ; od ; # R. J. Mathar, Sep 01 2006
MATHEMATICA
a[m_, n_] := a[m, n] = Which[n == 0, 0, m == 0, n - Sum[ Binomial[2 n - k - 1, n - 1]*a[0, k], {k, 0, (n - 1)}], True, a[m - 1, n] + a[m, n - 1]]; Array[a[2, #] &, 76, 0] (* Michael De Vlieger, Sep 04 2017 *)
CROSSREFS
Sequence in context: A335061 A350462 A357367 * A347929 A129877 A371913
KEYWORD
easy,sign
AUTHOR
Leroy Quet, Aug 02 2005
EXTENSIONS
More terms from R. J. Mathar, Sep 01 2006
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy