login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A115341
a(n) = abs(A154879(n+1)).
17
2, 4, 0, 8, 8, 24, 40, 88, 168, 344, 680, 1368, 2728, 5464, 10920, 21848, 43688, 87384, 174760, 349528, 699048, 1398104, 2796200, 5592408, 11184808, 22369624, 44739240, 89478488, 178956968, 357913944, 715827880, 1431655768, 2863311528
OFFSET
0,1
COMMENTS
General form: a(n)=2^n-a(n-1). - Vladimir Joseph Stephan Orlovsky, Dec 11 2008
For n>=1, a(n) is a(n) is the number of generalized compositions of n+3 when there are i^2-2*i-1 different types of i, (i=1,2,...). - Milan Janjic, Sep 24 2010
FORMULA
a(n) = (2^(n+1)-8*(-1)^n)/3, n>0.
a(n) = a(n-1) + 2*a(n-2), n>2.
G.f.: 2+4*x*(1-x)/((1+x)*(1-2*x)).
MATHEMATICA
g0[n_] = 2 - Sum[(-1)^(i + 1)/Sqrt[2]^(2*i), {i, 0, n}] f[x_] = ZTransform[g0[n], n, x] g[n_] = InverseZTransform[f[1/x], x, n] a0 = Table[Abs[g[n]], {n, 1, 25}]
k=0; lst={k}; Do[k=2^n-k; AppendTo[lst, k], {n, 3, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *)
Table[If[n==0, 2, (2^(n+1)-8*(-1)^n)/3], {n, 0, 30}] (* G. C. Greubel, Dec 30 2017 *)
PROG
(PARI) for(n=0, 30, print1(if(n==0, 2, (2^(n+1)-8*(-1)^n)/3), ", ")) \\ G. C. Greubel, Dec 30 2017
(Magma) [2] cat [(2^(n+1)-8*(-1)^n)/3: n in [1..30]]; // G. C. Greubel, Dec 30 2017
CROSSREFS
KEYWORD
nonn,easy,less
AUTHOR
Roger L. Bagula, Mar 06 2006
EXTENSIONS
Edited by the Associate Editors of the OEIS, Aug 21 2009
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy