login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A117195
Triangle read by rows: T(n,k) = number of partitions into distinct parts having rank k, 0<=k<n.
6
1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 2, 1, 1, 1, 0, 1, 1, 0, 2, 1, 2, 1, 1, 1, 0, 1, 0, 1, 1, 2, 2, 2, 1, 1, 1, 0, 1, 0, 1, 2, 2, 2, 2, 2, 1, 1, 1, 0, 1, 0, 1, 1, 3, 2, 3, 2, 2, 1, 1, 1, 0, 1, 0, 1, 2, 2, 4, 2, 3, 2, 2, 1, 1, 1, 0, 1
OFFSET
1,40
COMMENTS
T(n,0) = A010054(n), T(n,1) = 1-A010054(n) for n>1;
A000009(n) = Sum(T(n,k): 0<=k<n);
A117192(n) = Sum(T(n,k)*(1 - k mod 2): 0<=k<n);
A117193(n) = Sum(T(n,k)*(k mod 2): 0<=k<n);
A117194(n) = Sum(T(n,k)*(1 - k mod 2): 0<k<n);
LINKS
Maria Monks, Number theoretic properties of generating functions related to Dyson's rank for partitions into distinct parts, Proceedings of The American Mathematical Society, vol.138, no.02, pp.481-494, 2009.
FORMULA
G.f.: sum(n>=1, q^(n*(n+1)/2) / prod(k=1..n, 1-z*q^k) ), see Monks reference. [Joerg Arndt, Oct 07 2012]
EXAMPLE
Triangle starts:
[ 1] 1,
[ 2] 0, 1,
[ 3] 1, 0, 1,
[ 4] 0, 1, 0, 1,
[ 5] 0, 1, 1, 0, 1,
[ 6] 1, 0, 1, 1, 0, 1,
[ 7] 0, 1, 1, 1, 1, 0, 1,
[ 8] 0, 1, 1, 1, 1, 1, 0, 1,
[ 9] 0, 1, 1, 2, 1, 1, 1, 0, 1,
[10] 1, 0, 2, 1, 2, 1, 1, 1, 0, 1,
[11] 0, 1, 1, 2, 2, 2, 1, 1, 1, 0, 1,
[12] 0, 1, 2, 2, 2, 2, 2, 1, 1, 1, 0, 1,
[13] 0, 1, 1, 3, 2, 3, 2, 2, 1, 1, 1, 0, 1,
[14] 0, 1, 2, 2, 4, 2, 3, 2, 2, 1, 1, 1, 0, 1, ...
T(12,0) = #{} = 0,
T(12,1) = #{5+4+2+1} = 1,
T(12,2) = #{6+3+2+1, 5+4+3} = 2,
T(12,3) = #{6+5+1, 6+4+2} = 2,
T(12,4) = #{7+4+1, 7+3+2} = 2,
T(12,5) = #{8+3+1, 7+5} = 2,
T(12,6) = #{9+2+1, 8+4} = 2,
T(12,7) = #{9+3} = 1,
T(12,8) = #{10+2} = 1,
T(12,9) = #{11+1} = 1,
T(12,10) = #{} = 0,
T(12,11) = #{12} = 1.
MAPLE
b:= proc(n, i, k) option remember;
if n<0 or k<0 then []
elif n=0 then [0$k, 1]
elif i<1 then []
else zip ((x, y)-> x+y, b(n, i-1, k), b(n-i, i-1, k-1), 0)
fi
end:
T:= proc(n) local j, r; r:= [];
for j from 0 to n do
r:= zip ((x, y)-> x+y, r, b(n-j, j-1, j-1), 0)
od; r[]
end:
seq (T(n), n=1..20); # Alois P. Heinz, Aug 29 2011
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = Which[n<0 || k<0, {}, n == 0, Append[Array[0&, k], 1], i<1, {}, True, Plus @@ PadRight[{b[n, i-1, k], b[n-i, i-1, k-1]}]]; T[n_] := Module[{j, r}, r = {}; For[j = 0, j <= n, j++, r = Plus @@ PadRight[{r, b[n-j, j-1, j-1]}]]; r]; Table[T[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Jan 30 2014, after Alois P. Heinz *)
PROG
(PARI)
N=33; L=1+2*ceil(sqrtint(N));
q='q+O(q^N);
gf=sum(n=1, L, q^(n*(n+1)/2) / prod(k=1, n, 1-z*q^k) );
v=Vec(gf);
{ for (n=1, #v, /* print triangle: */
p = Pol(v[n], 'z) + 'c0;
p = polrecip(p);
rw = Vec(p); rw[1] -= 'c0;
print1("[", n, "] " );
print( rw );
); }
/* Joerg Arndt, Oct 07 2012 */
CROSSREFS
Sequence in context: A260413 A053252 A261029 * A156606 A324606 A194087
KEYWORD
nonn,tabl
AUTHOR
Reinhard Zumkeller, Mar 03 2006
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy