login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A120858
Dispersion of the Beatty sequence ([r*n]: n >= 1), where r = 3 + 8^(1/2): square array D(n,m) (n, m >= 1), read by ascending antidiagonals.
5
1, 2, 5, 3, 11, 29, 4, 17, 64, 169, 6, 23, 99, 373, 985, 7, 34, 134, 577, 2174, 5741, 8, 40, 198, 781, 3363, 12671, 33461, 9, 46, 233, 1154, 4552, 19601, 73852, 195025, 10, 52, 268, 1358, 6726, 26531, 114243, 430441, 1136689, 12, 58, 303, 1562
OFFSET
1,2
COMMENTS
Every positive integer occurs exactly once in array D and every pair of rows are mutually interspersed. That is, beginning at the first term of any row in D having greater initial term than that of another row, all the following terms individually separate the individual terms of the other row.
LINKS
Clark Kimberling, The equation (j+k+1)^2 - 4*k = Q*n^2 and related dispersions, Journal of Integer Sequences, 10 (2007), Article #07.2.7.
N. J. A. Sloane, Classic Sequences.
Eric Weisstein's World of Mathematics, Beatty sequence.
Wikipedia, Beatty sequence.
FORMULA
(1) Column 1 is the sequence ([s*n]: n >= 1) where 1/r + 1/s = 1. The numbers in all the other columns, arranged in increasing order, form the sequence ([r*n]: n >= 1).
(2) Every row satisfies these recurrences: x(n+1) = [r*x(n)] and x(n+2) = 6*x(n+1) - x(n). (Here [a] is the floor of number a.)
EXAMPLE
Northwest corner:
1, 5, 29, 169, 985, ...
2, 11, 64, 373, 2174, ...
3, 17, 99, 577, 3363, ...
4, 23, 134, 781, 4552, ...
6, 34, 198, 1154, 6726, ...
...
In row 1, we have 5 = [r], 29 = [5*r], 169 = [29*r], etc., where r = 3 + 8^(1/2); each new row starts with the least "new" number n, followed by [n*r], [[n*r]*r], [[[n*r]*r]*r], and so on.
PROG
(PARI) tabls(nn)={default("realprecision", 1000); my(D=matrix(nn, nn)); r = 3 + 8^(1/2); s=r/(r-1); for(n=1, nn, D[n, 1]=floor(s*n)); for(m=2, nn, for(n=1, nn, D[n, m]=floor(r*D[n, m-1]))); D}
/* To print the array flattened */
flat(nn)={D=tabls(nn); for(n=1, nn, for(m=1, n, print1(D[n+1-m, m], ", ")))}
/* To print the square array */
square(nn)={D=tabls(nn); for(n=1, nn, for(m=1, nn, print1(D[n, m], ", ")); print())} \\ Petros Hadjicostas, Jul 07 2020
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Jul 09 2006
EXTENSIONS
Name edited by Petros Hadjicostas, Jul 07 2020
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy