login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A129530
a(n) = (1/2)*n*(n-1)*3^(n-1).
5
0, 0, 3, 27, 162, 810, 3645, 15309, 61236, 236196, 885735, 3247695, 11691702, 41452398, 145083393, 502211745, 1721868840, 5854354056, 19758444939, 66248903619, 220829678730, 732224724210, 2416341589893, 7939408081077
OFFSET
0,3
COMMENTS
Number of inversions in all ternary words of length n on {0,1,2}. Example: a(2)=3 because each of the words 10,20,21 has one inversion and the words 00,01,02,11,12,22 have no inversions. a(n)=3*A027472(n+1). a(n)=Sum(k*A129529(n,k),k>=0).
FORMULA
G.f.: 3x^2/(1-3x)^3.
a(0)=0, a(1)=0, a(2)=3, a(n)=9*a(n-1)-27*a(n-2)+27*a(n-3). - Harvey P. Dale, Dec 18 2013
From Amiram Eldar, Jan 12 2021: (Start)
Sum_{n>=2} 1/a(n) = 2 * (1 - 2 * log(3/2)).
Sum_{n>=2} (-1)^n/a(n) = 2*(4*log(4/3) - 1). (End)
a(n) = 3*A027472(n+1). - R. J. Mathar, Jul 26 2022
MAPLE
seq(n*(n-1)*3^(n-1)/2, n=0..27);
MATHEMATICA
Table[(n(n-1)3^(n-1))/2, {n, 0, 30}] (* or *) LinearRecurrence[{9, -27, 27}, {0, 0, 3}, 30] (* Harvey P. Dale, Dec 18 2013 *)
PROG
(PARI) a(n)=n*(n-1)*3^(n-1)/2 \\ Charles R Greathouse IV, Oct 16 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Apr 22 2007
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy