login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A134094
Binomial convolution of the Stirling numbers of the second kind.
8
1, 2, 6, 26, 140, 887, 6405, 51564, 455712, 4370567, 45081476, 496556194, 5806502663, 71734434956, 932447207866, 12707973761320, 181033752071568, 2688530124711819, 41525910256013832, 665674913113633582
OFFSET
0,2
COMMENTS
Row n of triangle T=A134090 = row n of (I + D*C)^n for n>=0 where C denotes Pascal's triangle, I the identity matrix and D a matrix where D(n+1,n)=1 and zeros elsewhere.
LINKS
FORMULA
a(n) = sum( C(n+1,k)*|S2(n,k)|, k=0..n).
Row sums of triangle A134090.
a(n) = [x^n] Sum_{k=0..n} C(n,k)*x^k*(1-k*x) / [Product_{i=0..k+1}(1-i*x)], equivalently, a(n) = Sum_{k=0..n} C(n,k)*[S2(n,k) - k*S2(n-1,k)], where S2(n,k) = A048993(n,k) are Stirling numbers of the 2nd kind.
a(n) = Sum_{k=0..n} C(n+1,k)*S2(n,k). From Olivier Gérard, Oct 23 2012
MAPLE
f:= proc(n) local k; add(binomial(n+1, k)*combinat:-stirling2(n, k), k=0..n) end proc:
map(f, [$0..30]); # Robert Israel, Oct 16 2019
MATHEMATICA
Table[Sum[Binomial[n + 1, k] StirlingS2[n, k], {k, 0, n}], {n, 0, 20}]
PROG
(PARI) {a(n)=sum(k=0, n, binomial(n, k)*polcoeff((1-k*x)/prod(i=0, k+1, 1-i*x+x*O(x^(n))), n-k))}
CROSSREFS
Cf. A134090; columns: A122455, A134091, A134092, A134093; A048993 (S2).
Cf. A000110.
Sequence in context: A002788 A375652 A332796 * A009575 A263687 A379085
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 08 2007
EXTENSIONS
Definition modified and Mathematica program by Olivier Gérard, Oct 23 2012
Simplified Name and moved formulas into the formula section. - Paul D. Hanna, Oct 23 2013
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy