login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Square array read by antidiagonals: row m (m >= 1) satisfies b(0) = b(1) = 1; b(n) = m*b(n-1) + b(n-2):
11

%I #24 May 25 2017 11:56:42

%S 1,1,1,1,1,2,1,1,3,3,1,1,4,7,5,1,1,5,13,17,8,1,1,6,21,43,41,13,1,1,7,

%T 31,89,142,99,21,1,1,8,43,161,377,469,239,34,1,1,9,57,265,836,1597,

%U 1549,577,55,1,1,10,73,407,1633,4341,6765,5116,1393,89,1,1,11,91,593,2906

%N Square array read by antidiagonals: row m (m >= 1) satisfies b(0) = b(1) = 1; b(n) = m*b(n-1) + b(n-2):

%C For n > 1, the number of independent vertex sets in the graph K_m X P_{n-1}. For example, in K_3 X P_1 there are 4 independent vertex sets. - _Andrew Howroyd_, May 23 2017

%H Andrew Howroyd, <a href="/A135597/b135597.txt">Table of n, a(n) for n = 1..1275</a>

%F O.g.f. row m: (mx-x-1)/(x^2+mx-1). - _R. J. Mathar_, Apr 21 2008

%e Array begins:

%e ========================================================

%e m\n| 0 1 2 3 4 5 6 7 8 9

%e ---|----------------------------------------------------

%e 1 | 1 1 2 3 5 8 13 21 34 55 ...

%e 2 | 1 1 3 7 17 41 99 239 577 1393 ...

%e 3 | 1 1 4 13 43 142 469 1549 5116 16897 ...

%e 4 | 1 1 5 21 89 377 1597 6765 28657 121393 ...

%e 5 | 1 1 6 31 161 836 4341 22541 117046 607771 ...

%e 6 | 1 1 7 43 265 1633 10063 62011 382129 2354785 ...

%e 7 | 1 1 8 57 407 2906 20749 148149 1057792 7552693 ...

%e 8 | 1 1 9 73 593 4817 39129 317849 2581921 20973217 ...

%e ...

%p A135597 := proc(m,c) coeftayl( (m*x-x-1)/(x^2+m*x-1),x=0,c) ; end: for d from 1 to 15 do for c from 0 to d-1 do printf("%d,",A135597(d-c,c)) ; od: od: # _R. J. Mathar_, Apr 21 2008

%t a[_, 0] = a[_, 1] = 1; a[m_, n_] := m*a[m, n-1] + a[m, n-2]; Table[a[m-n+1, n], {m, 0, 11}, {n, 0, m}] // Flatten (* _Jean-François Alcover_, Jan 20 2014 *)

%Y Cf. A121875, A000045, A287376.

%Y Rows 2-11 are A001333, A003688, A015448, A015449, A015451, A015453-A015457.

%K nonn,tabl,easy

%O 1,6

%A _N. J. A. Sloane_, Mar 02 2008

%E More terms from _R. J. Mathar_, Apr 21 2008

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy