login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A137358
a(n) = Sum_{k <= n/2 } binomial(n-2k, 3k+2).
5
0, 0, 1, 3, 6, 10, 15, 22, 34, 57, 101, 181, 319, 549, 928, 1557, 2617, 4427, 7536, 12872, 21992, 37513, 63862, 108575, 184524, 313701, 533619, 908140, 1545839, 2631240, 4478044, 7619870, 12964858, 22058847, 37533077, 63865592, 108676262, 184929945, 314685488
OFFSET
0,4
REFERENCES
D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.4.
FORMULA
a(0)=0, a(1)=0, a(2)=1, a(3)=3, a(4)=6, a(n)=3*a(n-1)-3*a(n-2)+ a(n-3)+ a(n-5). - Harvey P. Dale, Nov 06 2012
G.f.: -x^2/(x^5+x^3-3*x^2+3*x-1). - Colin Barker, Jan 23 2013
MATHEMATICA
Table[Sum[Binomial[n-2k, 3k+2], {k, 0, Floor[n/2]}], {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1, 0, 1}, {0, 0, 1, 3, 6}, 50] (* Harvey P. Dale, Nov 06 2012 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Don Knuth, Apr 11 2008
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy