login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140773
Consider the products of all pairs of (not necessarily distinct) positive divisors of n. a(n) is the number of these products that divide n. a(n) also is the number of the products that are divisible by n.
10
1, 2, 2, 4, 2, 5, 2, 6, 4, 5, 2, 10, 2, 5, 5, 9, 2, 10, 2, 10, 5, 5, 2, 16, 4, 5, 6, 10, 2, 14, 2, 12, 5, 5, 5, 20, 2, 5, 5, 16, 2, 14, 2, 10, 10, 5, 2, 24, 4, 10, 5, 10, 2, 16, 5, 16, 5, 5, 2, 28, 2, 5, 10, 16, 5, 14, 2, 10, 5, 14, 2, 32, 2, 5, 10, 10, 5, 14, 2, 24, 9, 5, 2, 28, 5, 5, 5, 16, 2, 28, 5
OFFSET
1,2
COMMENTS
Number of 3D grids of n congruent boxes with two different edge lengths, in a box, modulo rotation (cf. A034836 for cubes instead of boxes and A007425 for boxes with three different edge lengths; cf. A000005 for the 2D case). - Manfred Boergens, Feb 25 2021
Number of distinct faces obtainable by arranging n unit cubes into a cuboid. - Chris W. Milson, Mar 14 2021
LINKS
Chris W. Milson, Constructing Cuboids
FORMULA
a(n) = Sum_{m|n} A038548(m) = Sum_{m|n} ceiling(d(m)/2), where d(m) = number of divisors of m (A000005). - Manfred Boergens, Feb 25 2021
a(n) = Sum_{d|n} A135539(d,n/d). - Ridouane Oudra, Jul 10 2021
a(n) = (A007425(n) + A046951(n))/2. - Ridouane Oudra, Apr 10 2024
EXAMPLE
The divisors of 20 are 1,2,4,5,10,20. There are 10 pairs of divisors whose product divides 20: 1*1=1, 1*2=2, 1*4=4, 1*5=5, 1*10=10, 1*20=20, 2*2=4, 2*5=10, 2*10=20, 4*5 = 20. Likewise, there are 10 products that are divisible by 20: 4*5=20, 2*10=20, 4*10=40, 10*10=100, 1*20=20, 2*20=40, 4*20=80, 5*20=100, 10*20=200, 20*20=400. So a(20) = 10.
MATHEMATICA
(* first do *) Needs["Combinatorica`"] (* then *) f[n_] := Count[ n/Times @@@ Union[Sort /@ Tuples[Divisors@ n, 2]], _Integer]; Array[f, 91] (* Robert G. Wilson v, May 31 2008 *)
d=Divisors[n]; r=Length[d]; Sum[Ceiling[Length[Divisors[d[[j]]]]/2], {j, r}] (* Manfred Boergens, Feb 25 2021 *)
PROG
(PARI)
\\ Two implementations, after the two different interpretations given by the author of the sequence:
A140773v1(n) = { my(ds = divisors(n), s=0); for(i=1, #ds, for(j=i, #ds, if(!(n%(ds[i]*ds[j])), s=s+1))); s; }
A140773v2(n) = { my(ds = divisors(n), s=0); for(i=1, #ds, for(j=i, #ds, if(!((ds[i]*ds[j])%n), s=s+1))); s; }
\\ Antti Karttunen, May 19 2017
(Python) # See C. W. Milson link.
CROSSREFS
Cf. A140774.
Cf. A369255 (parity), A369256 (positions of odd terms), A378213 (Dirichlet inverse).
Sequence in context: A054134 A319822 A005127 * A133911 A069932 A056148
KEYWORD
nonn
AUTHOR
Leroy Quet, May 29 2008
EXTENSIONS
Corrected and extended by Robert G. Wilson v, May 31 2008
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy