login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A144394
Triangle read by rows (n >= 4, 0 <= k <= n - 4): row n gives the coefficients in the expansion of ((x + 1)^n - (x^n + n*x^(n - 1) + n*x + 1))/x^2.
2
6, 10, 10, 15, 20, 15, 21, 35, 35, 21, 28, 56, 70, 56, 28, 36, 84, 126, 126, 84, 36, 45, 120, 210, 252, 210, 120, 45, 55, 165, 330, 462, 462, 330, 165, 55, 66, 220, 495, 792, 924, 792, 495, 220, 66, 78, 286, 715, 1287, 1716, 1716, 1287, 715, 286, 78, 91, 364, 1001, 2002, 3003, 3432, 3003, 2002, 1001, 364, 91
OFFSET
4,1
COMMENTS
Interior of Pascal's triangle, stripping out the initial 1, n and final n, 1 in each row.
LINKS
FORMULA
T(n,k) = binomial(n, k + 2), n >= 4, 0 <= k <= n - 4.
Sum_{n >= 4, 0 <= k <= n-4} 1/T(n,k) = 3/2. - Hermann Stamm-Wilbrandt, Jul 21 2014
EXAMPLE
Triangle begins:
6;
10, 10;
15, 20, 15;
21, 35, 35, 21;
28, 56, 70, 56, 28;
36, 84, 126, 126, 84, 36;
45, 120, 210, 252, 210, 120, 45;
55, 165, 330, 462, 462, 330, 165, 55;
66, 220, 495, 792, 924, 792, 495, 220, 66;
78, 286, 715, 1287, 1716, 1716, 1287, 715, 286, 78;
91, 364, 1001, 2002, 3003, 3432, 3003, 2002, 1001, 364, 91;
105, 455, 1365, 3003, 5005, 6435, 6435, 5005, 3003, 1365, 455, 105;
...
MATHEMATICA
p[x_, n_] = ((x + 1)^n - (x^n + n*x^(n - 1) + n*x + 1))/x^2
Table[CoefficientList[p[x, n], x], {n, 4, 15}] // Flatten
PROG
(Haskell)
a144394 n k = a144394_tabl !! (n-4) !! k
a144394_row n = a144394_tabl !! (n-4)
a144394_tabl = map (drop 2 . reverse . drop 2) $ drop 4 a007318_tabl
-- Reinhard Zumkeller, Dec 24 2012
(Maxima) create_list(binomial(n, k + 2), n, 4, 20, k, 0, n - 4); /* Franck Maminirina Ramaharo, Jan 25 2019 */
CROSSREFS
Cf. A007318, A052515 (row sums), A024746 (sorted), A144393.
Sequence in context: A175612 A024746 A111093 * A250742 A315122 A087873
KEYWORD
nonn,easy,tabl
AUTHOR
EXTENSIONS
Edited by Franklin T. Adams-Watters, Apr 07 2010
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy