login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A144513
a(n) = Sum_{k=0..n} (n+k+2)!/((n-k)!*k!*2^k).
3
2, 18, 162, 1670, 19980, 274932, 4296278, 75324762, 1466031690, 31386435410, 733391707752, 18578222154648, 507246285802802, 14851746921266010, 464244744007818090, 15431886798641124662, 543593886328031841828, 20228083875146926867932, 792934721766833544369830
OFFSET
0,1
LINKS
FORMULA
n^2*a(n) = (2*n+1)*(n^2+n+1)*a(n-1) + (n+1)^2*a(n-2). - Seiichi Manyama, Apr 07 2019
MAPLE
f2:=proc(n) local k; add((n+k+2)!/((n-k)!*k!*2^k), k=0..n); end; [seq(f2(n), n=0..50)];
PROG
(PARI) {a(n) = sum(k=0, n, (n+k+2)!/((n-k)!*k!*2^k))} \\ Seiichi Manyama, Apr 07 2019
CROSSREFS
Equals 2*A001514 (with a different offset).
Sequence in context: A322282 A270369 A352654 * A037518 A037721 A245998
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 16 2008
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy