login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A146309
a(n) = indices where primes occurred in A146306.
3
1, 3, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 58, 62, 66, 74, 78, 82, 86, 94, 102, 106, 114, 118, 122, 134, 138, 142, 146, 158, 166, 174, 178, 186, 194, 202, 206, 214, 218, 222, 226, 246, 254, 258, 262, 274, 278, 282, 298, 302, 314, 318, 326, 334, 346, 354, 358
OFFSET
0,2
COMMENTS
General formula (*Artur Jasinski*):
2 Cos[2*Pi/n] = Hypergeometric2F1[(n-6)/(2n),(n+6)/(2n),1/2,3/4] =
Hypergeometric2F1[A146306(n)/A146307(n),A146306(n+12)/A146307(n),1/2,3/4].
2 Cos[2*Pi/n] is root of polynomial of degree = EulerPhi[n]/2 = A000010(n)/2 = A023022(n).
MATHEMATICA
aa = {}; Do[k = Denominator[(n - 6)/(2 n)]; If[PrimeQ[k], AppendTo[aa, n]], {n, 1, 1000}]; aa (*Artur Jasinski*)
KEYWORD
nonn
AUTHOR
Artur Jasinski, Oct 29 2008
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy