login
A146481
Decimal expansion of Product_{n>=2} (1 - 1/(n*(n-1))).
1
2, 9, 6, 6, 7, 5, 1, 3, 4, 7, 4, 3, 5, 9, 1, 0, 3, 4, 5, 7, 0, 1, 5, 5, 0, 2, 0, 2, 1, 9, 1, 4, 2, 8, 6, 4, 8, 6, 4, 8, 3, 1, 5, 1, 9, 1, 7, 8, 9, 4, 7, 8, 9, 0, 8, 1, 6, 7, 3, 5, 7, 3, 3, 1, 6, 5, 9, 0, 6, 1, 6, 2, 9, 1, 5, 1, 9, 6, 0, 8, 8, 8, 3, 6, 6, 7, 4, 8, 1, 6, 4, 0, 2, 1, 2, 6, 2, 2, 1, 4, 5, 4, 1, 7, 7
OFFSET
0,1
COMMENTS
Product of Artin's constant A005596 and the equivalent almost-prime products.
LINKS
M. Chamberland, A. Straub, On gamma constants and infinite products, arXiv:1309.3455
R. J. Mathar, Hardy-Littlewood constants embedded into infinite products over all positive integers, arXiv:0903.2514 [math.NT], first line Table 3.
FORMULA
The logarithm is -Sum_{s>=2} Sum_{j=1..floor(s/(1+r))} binomial(s-r*j-1, j-1)*(1-Zeta(s))/j at r=1.
s*Sum_{j=1..floor(s/2)} binomial(s-j-1, j-1)/j = A001610(s-1).
Equals 1/Product_{k=1..2} Gamma(1-x_k) = -sin(A094886)/A000796, where x_k are the 2 roots of the polynomial x*(x+1)-1. [R. J. Mathar, Feb 20 2009]
EXAMPLE
0.2966751347435910345... = (1 - 1/2)*(1 - 1/6)*(1 - 1/12)*(1 - 1/20)*...
MAPLE
phi := (1+sqrt(5))/2; evalf(-sin(Pi*phi)/Pi) ; # R. J. Mathar, Feb 20 2009
MATHEMATICA
RealDigits[-Cos[Pi*Sqrt[5]/2]/Pi, 10, 105] // First (* Jean-François Alcover, Feb 11 2013 *)
CROSSREFS
Cf. A005596.
Sequence in context: A152564 A318523 A138029 * A233766 A021341 A011247
KEYWORD
nonn,cons
AUTHOR
R. J. Mathar, Feb 13 2009
EXTENSIONS
More terms from Jean-François Alcover, Feb 11 2013
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy