login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A152264
a(n) = ((9+sqrt(6))^n + (9-sqrt(6))^n)/2.
2
1, 9, 87, 891, 9513, 104409, 1165887, 13155291, 149353713, 1701720009, 19429431687, 222100769691, 2540606477913, 29073358875609, 332774973917487, 3809447614844091, 43611934023382113, 499306241307571209
OFFSET
0,2
COMMENTS
Binomial transform of A152263. - Philippe Deléham, Dec 03 2008
FORMULA
From Philippe Deléham, Dec 03 2008: (Start)
a(n) = 18*a(n-1) - 75*a(n-2), n > 1; a(0)=1, a(1)=9.
G.f.: (1-9*x)/(1-18*x+75*x^2).
a(n) = Sum_{k=0..n} A098158(n,k)*9^(2k-n)*6^(n-k). (End)
MATHEMATICA
CoefficientList[Series[(1-9x)/(1-18x+75x^2), {x, 0, 20}], x] (* or *) LinearRecurrence[{18, -75}, {1, 9}, 20] (* Harvey P. Dale, Feb 07 2023 *)
PROG
(Magma) Z<x>:= PolynomialRing(Integers()); N<r6>:=NumberField(x^2-6); S:=[ ((9+r6)^n+(9-r6)^n)/2: n in [0..17] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Dec 03 2008
CROSSREFS
Sequence in context: A153191 A223277 A267265 * A035101 A351525 A245491
KEYWORD
nonn
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Dec 01 2008
EXTENSIONS
Extended beyond a(6) by Klaus Brockhaus, Dec 03 2008
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy