OFFSET
1,4
COMMENTS
0 + 0 + 1 = 1^6; 0 + 1 + 63 = 2^6; ...
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..5000
Index entries for linear recurrences with constant coefficients, signature (6,-15,21,-21,21,-21,15,-6,1).
FORMULA
From R. J. Mathar, Dec 12 2008: (Start)
a(n) = -26*n/3 + 20*n^3/3 - 5*n^2 + 7/3 - 2*n^5 + n^6/3 + 5*n^4/3 - 7*A131713(n)/3.
G.f.: x^3*(1+x)*(x^4 + 56*x^3 + 246*x^2 + 56*x + 1)/((1-x)^7*(1+x+x^2)). (End)
MATHEMATICA
k0=k1=0; lst={k0, k1}; Do[kt=k1; k1=n^6-k1-k0; k0=kt; AppendTo[lst, k1], {n, 1, 5!}]; lst
LinearRecurrence[{6, -15, 21, -21, 21, -21, 15, -6, 1}, {0, 0, 1, 63, 665, 3368, 11592, 31696, 74361}, 5000]
CoefficientList[Series[x^2*(1+x)*(x^4 + 56*x^3 + 246*x^2 + 56*x + 1)/((1-x)^7*(1+x+x^2)), {x, 0, 5000}], x] (* Stefano Spezia, Sep 02 2018 *)
PROG
(PARI) x='x+O('x^30); concat([0, 0], Vec(x^3*(1+x)*(x^4+56*x^3 +246*x^2 +56*x+1)/((1-x)^7*(1+x+x^2)))) \\ G. C. Greubel, Sep 01 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); [0, 0] cat Coefficients(R!(x^3*(1+x)*(x^4+56*x^3+246*x^2+56*x+1)/((1-x)^7*(1 +x+ x^2)))); // G. C. Greubel, Sep 01 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Joseph Stephan Orlovsky, Dec 11 2008
STATUS
approved