login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A152731
a(n) + a(n+1) + a(n+2) = n^6, a(1)=a(2)=0.
3
0, 0, 1, 63, 665, 3368, 11592, 31696, 74361, 156087, 300993, 542920, 927648, 1515416, 2383745, 3630375, 5376505, 7770336, 10990728, 15251160, 20803993, 27944847, 37017281, 48417776, 62600832, 80084368, 101455425, 127375983
OFFSET
1,4
COMMENTS
0 + 0 + 1 = 1^6; 0 + 1 + 63 = 2^6; ...
LINKS
FORMULA
From R. J. Mathar, Dec 12 2008: (Start)
a(n) = -26*n/3 + 20*n^3/3 - 5*n^2 + 7/3 - 2*n^5 + n^6/3 + 5*n^4/3 - 7*A131713(n)/3.
G.f.: x^3*(1+x)*(x^4 + 56*x^3 + 246*x^2 + 56*x + 1)/((1-x)^7*(1+x+x^2)). (End)
MATHEMATICA
k0=k1=0; lst={k0, k1}; Do[kt=k1; k1=n^6-k1-k0; k0=kt; AppendTo[lst, k1], {n, 1, 5!}]; lst
LinearRecurrence[{6, -15, 21, -21, 21, -21, 15, -6, 1}, {0, 0, 1, 63, 665, 3368, 11592, 31696, 74361}, 5000]
CoefficientList[Series[x^2*(1+x)*(x^4 + 56*x^3 + 246*x^2 + 56*x + 1)/((1-x)^7*(1+x+x^2)), {x, 0, 5000}], x] (* Stefano Spezia, Sep 02 2018 *)
PROG
(PARI) x='x+O('x^30); concat([0, 0], Vec(x^3*(1+x)*(x^4+56*x^3 +246*x^2 +56*x+1)/((1-x)^7*(1+x+x^2)))) \\ G. C. Greubel, Sep 01 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); [0, 0] cat Coefficients(R!(x^3*(1+x)*(x^4+56*x^3+246*x^2+56*x+1)/((1-x)^7*(1 +x+ x^2)))); // G. C. Greubel, Sep 01 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy