OFFSET
2,2
COMMENTS
Row sums are: {1, 7, 123, 4181, 234110, 19543784, 2275442862, 352293774104, 69988577590464,...}.
The sum algorithm is based on the Eulerian number sum with Stirling first kind substituted for the binomial.
LINKS
Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
FORMULA
t(n,m)=Sum[(-1)^(n + 1)* StirlingS1[n, j]*(k + 1 - j)^(n - 1), {j, 0, k + 1}].
EXAMPLE
{1},
{2, 5},
{6, 37, 80},
{24, 334, 1179, 2644},
{120, 3566, 20617, 63413, 146394},
{720, 44316, 413608, 1766365, 5161687, 12157088},
{5040, 632052, 9362908, 55669771, 207499100, 590541383, 1411732608},
{40320, 10212336, 236604140, 1953603356, 9326112285, 32221533668, 90256527071, 218289140928},
{362880, 184767984, 6618132828, 75520418032, 462351260321, 1945272980967, 6403986114493, 17752922644079, 43341720908880}
MATHEMATICA
Clear[t, n, k]; t[n_, k_] = Sum[(-1)^(n + 1)* StirlingS1[n, j]*(k + 1 - j)^(n - 1), {j, 0, k + 1}];
Table[Table[t[n, k], {k, 1, n - 1}], {n, 2, 10}];
Flatten[%]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Dec 15 2008
STATUS
approved