login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A152918
Triangle read by rows based on the Stirling numbers S1: t(n,m)=Sum[(-1)^(n + 1)* StirlingS1[n, j]*(k + 1 - j)^(n - 1), {j, 0, k + 1}].
0
1, 2, 5, 6, 37, 80, 24, 334, 1179, 2644, 120, 3566, 20617, 63413, 146394, 720, 44316, 413608, 1766365, 5161687, 12157088, 5040, 632052, 9362908, 55669771, 207499100, 590541383, 1411732608, 40320, 10212336, 236604140, 1953603356, 9326112285
OFFSET
2,2
COMMENTS
Row sums are: {1, 7, 123, 4181, 234110, 19543784, 2275442862, 352293774104, 69988577590464,...}.
The sum algorithm is based on the Eulerian number sum with Stirling first kind substituted for the binomial.
LINKS
Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
FORMULA
t(n,m)=Sum[(-1)^(n + 1)* StirlingS1[n, j]*(k + 1 - j)^(n - 1), {j, 0, k + 1}].
EXAMPLE
{1},
{2, 5},
{6, 37, 80},
{24, 334, 1179, 2644},
{120, 3566, 20617, 63413, 146394},
{720, 44316, 413608, 1766365, 5161687, 12157088},
{5040, 632052, 9362908, 55669771, 207499100, 590541383, 1411732608},
{40320, 10212336, 236604140, 1953603356, 9326112285, 32221533668, 90256527071, 218289140928},
{362880, 184767984, 6618132828, 75520418032, 462351260321, 1945272980967, 6403986114493, 17752922644079, 43341720908880}
MATHEMATICA
Clear[t, n, k]; t[n_, k_] = Sum[(-1)^(n + 1)* StirlingS1[n, j]*(k + 1 - j)^(n - 1), {j, 0, k + 1}];
Table[Table[t[n, k], {k, 1, n - 1}], {n, 2, 10}];
Flatten[%]
CROSSREFS
Sequence in context: A164805 A275285 A360085 * A276845 A365503 A055877
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Dec 15 2008
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy