login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A159840
Numerator of Hermite(n, 15/22).
1
1, 15, -17, -7515, -100383, 5768775, 207995055, -5256335475, -431188655295, 3708435650175, 994755425985135, 5946917116353525, -2558835187227126495, -55652375114297534025, 7215309872302076942895, 296779894971771199420125, -21739876411879971311406975
OFFSET
0,2
FORMULA
E.g.f.: exp(-x*(121*x-15)). - Simon Plouffe, Jun 22 2018
From G. C. Greubel, Jul 11 2018: (Start)
a(n) = 11^n * Hermite(n, 15/22).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(15/11)^(n-2*k)/(k!*(n-2*k)!)). (End)
D-finite with recurrence a(n) -15*a(n-1) +242*(n-1)*a(n-2)=0. [DLMF] - R. J. Mathar, Feb 06 2021
MATHEMATICA
Numerator[Table[HermiteH[n, 15/22], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 22 2011 *)
Table[11^n*HermiteH[n, 15/22], {n, 0, 30}] (* G. C. Greubel, Jul 11 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 15/22)) \\ Charles R Greathouse IV, Jan 29 2016
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(15/11)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 11 2018
CROSSREFS
Cf. A159657.
Sequence in context: A157716 A113968 A093812 * A124609 A102500 A067757
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy