Reinhard Zumkeller, Jun 17 2009 reinhard.zumkeller@gmail.com Enumerations of Divisors ======================== EDP(n, x) := interpolating polynomial for the divisors of n. {EDP(n, k): 0<=k1 (*largest proper divisor of n *) EDP(n, A000005(n)-1) = n EDP(n, A000005(n)) = A161700(n) EDP(A000040(n), x) = A006093(n)*x + 1 ---+--------------------------------------------------------------------+------------- n | EDP(n, x) | ---+--------------------------------------------------------------------+------------- 1 | 1 | A000012(x) 2 | x + 1 | A000027(x+1) 3 | 2*x + 1 | A005408(x) 4 | (x^2 + x + 2)/ 2 | A000124(x) 5 | 4*x + 1 | A016813(x) 6 | (x^3 - 3*x^2 + 5*x + 3)/3 | A086514(x+1) 7 | 6*x + 1 | A016921(x) 8 | (x^3 + 5*x + 6)/6 | A000125(x) 9 | 2*x^2 + 1 | A058331(x) 10 | x^2 + 1 | A002522(x) 11 | 10*x + 1 | A017281(x) 12 | (x^5 - 5*x^4 + 5*x^3 + 5*x^2 + 114*x + 120)/120 | A161701(x) 13 | 12*x + 1 | A017533(x) 14 | (-x^3 + 9*x^2 - 5*x + 3)/3 | A161702(x) 15 | (4*x^3 - 12*x^2 + 14*x + 3)/3 | A161703(x) 16 | (x^4 - 2*x^3 + 11*x^2 + 14*x + 24)/24 | A000127(x+1) 17 | 16*x + 1 | A158057(x) 18 | (3*x^5 - 35*x^4 + 145*x^3 - 235*x^2 + 152*x + 30)/30 | A161704(x) 19 | 18*x + 1 | A161705(x) 20 | (-11*x^5 + 145*x^4 - 635*x^3 + 1115*x^2 - 494*x + 120)/120 | A161706(x) 21 | (4*x^3 - 9*x^2 + 11*x + 3)/3 | A161707(x) 22 | -x^3 + 7*x^2 - 5*x + 1 | A161708(x) 23 | 22*x + 1 | A161709(x) 24 | (-6*x^7 + 154*x^6 - 1533*x^5 + 7525*x^4 | A161710(x) | - 18879*x^ 3 + 22561*x^2 - 7302*x + 2520)/2520 | 25 | 8*x^2 - 4*x + 1 | A080856(x) 26 | (-4*x^3 + 27*x^2 - 20*x + 3)/3 | A161711(x) 27 | (4*x^3 - 6*x^2 + 8*x + 3)/3 | A161712(x) 28 | (-x^5 + 15*x^4 - 65*x^3 + 125*x^2 - 34*x + 40)/40 | A161713(x) 29 | 28*x + 1 | A161714(x) 30 | (50*x^7 - 1197*x^6 + 11333*x^5 - 53655*x^4 | A161715(x) | + 132125*x^3 - 156828*x^2 + 73212*x + 5040)/5040 | 31 | 30*x + 1 | A128470(x+1) 32 | (x^5 - 5*x^4 + 25*x^3 + 5*x^2 + 94*x + 120)/120 | A006261(x) ---+--------------------------------------------------------------------+------------- pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy