login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A167487
a(n) = n*(n + 3)/2 + 8.
5
8, 10, 13, 17, 22, 28, 35, 43, 52, 62, 73, 85, 98, 112, 127, 143, 160, 178, 197, 217, 238, 260, 283, 307, 332, 358, 385, 413, 442, 472, 503, 535, 568, 602, 637, 673, 710, 748, 787, 827, 868, 910, 953, 997, 1042, 1088, 1135, 1183, 1232, 1282, 1333, 1385, 1438, 1492
OFFSET
0,1
COMMENTS
2*a(i) + 3 is prime for i = 0..14. - Vincenzo Librandi, Jun 01 2014
Numbers m >= 8 such that 8*m - 55 is a square. - Bruce J. Nicholson, Jul 26 2017
FORMULA
a(n) = n + a(n-1) + 1 with n > 1, a(1)=10.
G.f.: (8 - 14*x + 7*x^2)/(1 - x)^3. - Vincenzo Librandi, Sep 16 2013
a(n) = Sum_{i=n-5..n+7} i*(i+1)/26. - Bruno Berselli, Oct 20 2016
Sum_{n>=0} 1/a(n) = -1/7 + 2*Pi*tanh(sqrt(55)*Pi/2)/sqrt(55). - Amiram Eldar, Dec 13 2022
From Elmo R. Oliveira, Oct 31 2024: (Start)
E.g.f.: exp(x)*(8 + 2*x + x^2/2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
MATHEMATICA
Table[n (n + 3)/2 + 8, {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Jun 03 2011 *)
CoefficientList[Series[(8 - 14 x + 7 x^2) / (1 - x)^3, {x, 0, 60}], x] (* Vincenzo Librandi, Sep 16 2013 *)
LinearRecurrence[{3, -3, 1}, {8, 10, 13}, 60] (* Harvey P. Dale, Jul 05 2020 *)
PROG
(Magma) [n*(n+3)/2+8: n in [0..60]]; // Vincenzo Librandi, Sep 16 2013
(PARI) a(n)=n*(n+3)/2+8 \\ Charles R Greathouse IV, Jun 16 2017
CROSSREFS
Cf. A167499.
Sequence in context: A203322 A120166 A030732 * A010916 A275627 A101764
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Nov 07 2009
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy