login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A168035
Primes p for which floor(p^phi) and floor(phi^p) are prime.
0
2, 5, 7, 17, 61, 617, 7741, 10691
OFFSET
1,1
MATHEMATICA
$MaxExtraPrecision=8!; Select[Prime[Range[3*6! ]], PrimeQ[Floor[ #^GoldenRatio]]&&PrimeQ[Floor[GoldenRatio^# ]]&]
PROG
(PARI) phi=(1+sqrt(5))/2; forprime(p=2, 1e3, if(isprime(floor(p^phi)) && isprime(floor(phi^p)), print1(p", "))) \\ Charles R Greathouse IV, Jul 29 2011
CROSSREFS
Intersection of A168033 and A168034.
Sequence in context: A303677 A303802 A045357 * A247323 A099357 A306918
KEYWORD
nonn,less
AUTHOR
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy