login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A168405
E.g.f.: Sum_{n>=0} arcsin(2^n*x)^n/n!.
2
1, 2, 16, 520, 66560, 33882400, 69055283200, 564153087455360, 18462510039810703360, 2418626471936038215754240, 1267795676362601991645220044800, 2658560574070850656450883768752998400
OFFSET
0,2
FORMULA
a(n) = [x^n/n!] exp(2^n*arcsin(x)) for n >= 0.
EXAMPLE
E.g.f.: A(x) = 1 + 2*x + 16*x^2/2! + 520*x^3/3! + 66560*x^4/4! + ...
A(x) = 1 + arcsin(2*x) + arcsin(4*x)^2/2! + arcsin(8*x)^3/3! + arcsin(16*x)^4/4! + ... + arcsin(2^n*x)^n/n! + ...
a(n) = coefficient of x^n/n! in G(x)^(2^n) where G(x) = exp(arcsin(x)):
G(x) = 1 + x + x^2/2! + 2*x^3/3! + 5*x^4/4! + 20*x^5/5! + 85*x^6/6! + ... + A006228(n)*x^n/n! + ...
PROG
(PARI) {a(n)=n!*polcoeff(sum(k=0, n, asin(2^k*x +x*O(x^n))^k/k!), n)}
(PARI) {a(n)=n!*polcoeff(exp(2^n*asin(x +x*O(x^n))), n)}
CROSSREFS
Cf. A006228 (exp(arcsin x)), variants: A136632, A168402, A168403, A168404, A168406, A168407, A168408.
Sequence in context: A002416 A013028 A136632 * A012919 A012914 A168404
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 25 2009
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy