login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Pisano period of the 4-Fibonacci numbers A001076.
9

%I #23 Nov 16 2023 15:43:16

%S 1,2,8,2,20,8,16,4,8,20,10,8,28,16,40,8,12,8,6,20,16,10,16,8,100,28,

%T 24,16,14,40,10,16,40,12,80,8,76,6,56,20,40,16,88,10,40,16,32,8,112,

%U 100,24,28,36,24,20,16,24,14,58,40,20,10,16,32,140,40,136,12,16,80,70,8,148,76

%N Pisano period of the 4-Fibonacci numbers A001076.

%C Period of the sequence defined by reading A001076 modulo n.

%H Vincenzo Librandi, <a href="/A175183/b175183.txt">Table of n, a(n) for n = 1..1000</a>

%H Sergio Falcon and Ángel Plaza, <a href="http://dx.doi.org/10.1016/j.chaos.2008.02.014">k-Fibonacci sequences modulo m</a>, Chaos, Solit. Fractals 41 (2009), 497-504.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PisanoPeriod.html">Pisano period</a>.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Pisano_period">Pisano period</a>.

%p F := proc(k,n) option remember; if n <= 1 then n; else k*procname(k,n-1)+procname(k,n-2) ; end if; end proc:

%p Pper := proc(k,m) local cha, zer,n,fmodm ; cha := [] ; zer := [] ; for n from 0 do fmodm := F(k,n) mod m ; cha := [op(cha),fmodm] ; if fmodm = 0 then zer := [op(zer),n] ; end if; if nops(zer) = 5 then break; end if; end do ; if [op(1..zer[2],cha) ] = [ op(zer[2]+1..zer[3],cha) ] and [op(1..zer[2],cha)] = [ op(zer[3]+1..zer[4],cha) ] and [op(1..zer[2],cha)] = [ op(zer[4]+1..zer[5],cha) ] then return zer[2] ; elif [op(1..zer[3],cha) ] = [ op(zer[3]+1..zer[5],cha) ] then return zer[3] ; else return zer[5] ; end if; end proc:

%p k := 4 ; seq( Pper(k,m),m=1..80) ;

%t Table[s = t = Mod[{0, 1}, n]; cnt=1; While[tmp = Mod[4*t[[2]] + t[[1]], n]; t[[1]] = t[[2]]; t[[2]] = tmp; s!= t, cnt++]; cnt, {n, 100}] (* _Vincenzo Librandi_, Dec 20 2012, after _T. D. Noe_ *)

%Y Cf. A001076, A001175, A175181, A175182, A175184, A175185.

%K nonn,easy

%O 1,2

%A _R. J. Mathar_, Mar 01 2010

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy