login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A185010
a(n) = A000108(n)*A015518(n+1), where A000108 are the Catalan numbers and A015518(n) = 2*A015518(n-1) + 3*A015518(n-2).
1
1, 2, 14, 100, 854, 7644, 72204, 703560, 7037030, 71772844, 743844452, 7810307960, 82909630972, 888316731800, 9593823377880, 104332819539600, 1141523825614470, 12556761952114380, 138785264158902900, 1540516430396559000, 17165754516697206420, 191944345934966132040
OFFSET
0,2
COMMENTS
More generally, given {S} such that: S(n) = b*S(n-1) + c*S(n-2), |b|>0, |c|>0, S(0)=1, then
Sum_{n>=0} S(n)*Catalan(n)*x^n = sqrt( (1-2*b*x - sqrt(1-4*b*x-16*c*x^2))/(2*b^2+8*c) )/x.
FORMULA
G.f.: sqrt( (1-4*x - sqrt(1-8*x-48*x^2))/32 )/x.
G.f.: sqrt( M(4*x) ), where M(x) is g.f. of A001006. - Werner Schulte, Aug 10 2015
Conjecture: n*(n+1)*a(n) -4*n*(2*n-1)*a(n-1) -12*(2*n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Oct 08 2016
G.f: B(m(4z)/4), where B(x) is the g.f. of A000984 and m(x) is the g.f. of A086246. - Alexander Burstein, May 20 2021
EXAMPLE
G.f.: A(x) = 1 + 1*2*x + 2*7*x^2 + 5*20*x^3 + 14*61*x^4 + 42*182*x^5 + 132*547*x^6 +...+ A000108(n)*A015518(n+1)*x^n +...
MATHEMATICA
CoefficientList[Series[Sqrt[(1 - 4*x - Sqrt[1 - 8*x - 48*x^2])/32]/x, {x, 0, 50}], x] (* G. C. Greubel, Jun 09 2017 *)
PROG
(PARI) {A000108(n)=binomial(2*n, n)/(n+1)}
{A015518(n)=polcoeff(x/(1-2*x-3*x^2 +x*O(x^n)), n)}
{a(n)=A000108(n)*A015518(n+1)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 26 2012
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy