login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A190816
a(n) = 5*n^2 - 4*n + 1.
7
1, 2, 13, 34, 65, 106, 157, 218, 289, 370, 461, 562, 673, 794, 925, 1066, 1217, 1378, 1549, 1730, 1921, 2122, 2333, 2554, 2785, 3026, 3277, 3538, 3809, 4090, 4381, 4682, 4993, 5314, 5645, 5986, 6337, 6698, 7069, 7450, 7841, 8242, 8653, 9074
OFFSET
0,2
COMMENTS
For n >= 2, hypotenuses of primitive Pythagorean triangles with m = 2*n-1, where the sides of the triangle are a = m^2 - n^2, b = 2*n*m, c = m^2 + n^2; this sequence is the c values, short sides (a) are A045944(n-1), and long sides (b) are A002939(n).
FORMULA
From Harvey P. Dale, May 24 2011: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=2, a(2)=13.
G.f.: (1 - x + 10*x^2)/(1-x)^3. (End)
E.g.f.: (1 + x + 5*x^2)*exp(x). - G. C. Greubel, Dec 03 2023
MATHEMATICA
Table[5*n^2 - 4*n + 1, {n, 0, 100}]
LinearRecurrence[{3, -3, 1}, {1, 2, 13}, 100] (* or *) CoefficientList[ Series[ (-10 x^2+x-1)/(x-1)^3, {x, 0, 100}], x] (* Harvey P. Dale, May 24 2011 *)
PROG
(Magma) [5*n^2 - 4*n + 1: n in [0..50]]; // Vincenzo Librandi, Jun 19 2011
(PARI) a(n)=5*n^2-4*n+1 \\ Charles R Greathouse IV, Oct 16 2015
(SageMath) [5*n^2-4*n+1 for n in range(41)] # G. C. Greubel, Dec 03 2023
CROSSREFS
Short sides (a) A045944(n-1), long sides (b) A002939(n).
Cf. A017281 (first differences), A051624 (a(n)-1), A202141.
Sequences of the form m*n^2 - 4*n + 1: -A131098 (m=0), A028872 (m=1), A056220 (m=2), A045944 (m=3), A016754 (m=4), this sequence (m=5), A126587 (m=6), A339623 (m=7), A080856 (m=8).
Sequence in context: A051474 A062708 A296293 * A084910 A124024 A102229
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Edited by Franklin T. Adams-Watters, May 20 2011
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy