login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A190914
Expansion of ( 5-9*x^2-2*x^3 ) / ( (1+x-x^2)*(1-x-x^2-x^3) ).
2
5, 0, 6, 3, 18, 10, 57, 42, 178, 165, 566, 616, 1821, 2236, 5914, 7963, 19362, 27982, 63813, 97394, 211458, 336633, 703786, 1157544, 2350597, 3964960, 7872702, 13541691, 26425522, 46147178, 88853297, 156994354, 299165378, 533410837, 1008343310, 1810544592, 3401446413, 6140811708, 11481472994, 20815538227
OFFSET
0,1
COMMENTS
The sequence ..., 14, 29, 10, 2, 9, 2, 0, [5], 0, 6, 3, 18, 10, 57, 42, ...
(the number in square brackets at index 0) equals the trace of:
[ 0 0 0 0-1 ]
[ 1 0 0 0 0 ]
[ 0 1 0 0 1 ]^(+n)
[ 0 0 1 0 3 ]
[ 0 0 0 1 0 ]
or
[ 0 0 0 0-1 ]
[ 1 0 0 0 0 ]
[ 0 1 0 0 3 ]^(-n)
[ 0 0 1 0 1 ]
[ 0 0 0 1 0 ]
Its characteristic polynomial is (x^2 +/- x - 1) * (x^3 -/+ x^2 -/+ x - 1); these factors are Fibonacci and tribonacci polynomials. The ratio of negative terms approaches the golden ratio; the ratio of positive terms approaches the tribonacci constant.
Prime numbers p divide a(+p) and a(-p), as the trace of a matrix M^p (mod p) is constant.
Nonprimes c very rarely divide a(+c) and a(-c) simultaneously. The only known dual pseudoprime in the sequence is 1.
The distribution of residues induces gaps between pseudoprimes having roughly the size of c. For example, after 1034881 there is a gap of more than one million terms without either variety of pseudoprime.
Pseudoprimes appear limited to squared primes and squarefree numbers with three or more prime factors. 11 and 13 are more common than other factors.
Positive pseudoprimes: c | a(+c)
----------------------------------------------
1
3481. . . . 59^2
17143 . . . 7 31 79
105589. . . 11 29 331
635335. . . 5 283 449
2992191 . . 3 29 163 211
3659569 . . 1913^2
Negative pseudoprimes: c | a(-c)
----------------------------------------------
1
9 . . . . . 3^2
806 . . . . 2 13 31
1419. . . . 3 11 43
6241. . . . 79^2
6721. . . . 11 13 47
12749 . . . 11 19 61
21106 . . . 2 61 173
38714 . . . 2 13 1489
146689. . . 383^2
649621. . . 7 17 53 103
1034881 . . 41 43 587
FORMULA
a(n) = A061084(n+1) + A001644(n). - R. J. Mathar, Jun 06 2011
MATHEMATICA
LinearRecurrence[{0, 3, 1, 0, -1}, {5, 0, 6, 3, 18}, 40] (* G. C. Greubel, Apr 23 2019 *)
PROG
(PARI) my(x='x+O('x^40)); Vec((5-9*x^2-2*x^3)/((1+x-x^2)*(1-x-x^2-x^3))) \\ G. C. Greubel, Apr 23 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (5-9*x^2 -2*x^3)/((1+x-x^2)*(1-x-x^2-x^3)) )); // G. C. Greubel, Apr 23 2019
(SageMath) ((5-9*x^2-2*x^3)/((1+x-x^2)*(1-x-x^2-x^3))).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 23 2019
CROSSREFS
Cf. A190913 (extended to negative indices), A000045, A000073, A001608, A000040, A005117, A125666.
Sequence in context: A197508 A354683 A159751 * A153458 A096287 A240243
KEYWORD
nonn,easy
AUTHOR
Reikku Kulon, May 23 2011
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy