login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193101
Minimal number of numbers of the form (m^3+5m)/6 (see A004006) needed to sum to n.
4
1, 2, 1, 2, 3, 2, 1, 2, 3, 2, 3, 4, 3, 1, 2, 3, 2, 3, 4, 3, 2, 3, 4, 3, 1, 2, 3, 2, 3, 4, 3, 2, 3, 4, 3, 4, 5, 4, 2, 3, 1, 2, 3, 2, 3, 3, 3, 2, 3, 2, 3, 4, 3, 4, 2, 3, 3, 3, 4, 4, 4, 3, 1, 2, 3, 2, 3, 4, 3, 2, 3, 4, 3, 4, 3, 4, 2, 3, 4, 3, 4, 2, 3, 3, 3, 4, 4, 2, 3, 4, 3, 1, 2, 3, 2, 3, 4, 3, 2, 3, 4, 3, 4, 2, 3, 2, 3, 4, 3, 4, 3, 4, 3, 4, 5, 4, 2, 3, 4, 3
OFFSET
1,2
COMMENTS
Watson showed that a(n) <= 8 for all n.
It is conjectured that a(n) <= 5 for all n.
LINKS
N. J. A. Sloane, Transforms
G. L. Watson, Sums of eight values of a cubic polynomial, J. London Math. Soc., 27 (1952), 217-224.
MAPLE
# LAGRANGE transform of a sequence {a(n)}
# Suggested by Lagrange's theorem that at most 4 squares are needed to sum to n.
# Returns b(n) = minimal number of terms of {a} needed to sum to n for 1 <= n <= M.
# C = maximal number of terms of {a} to try to build n
# M = upper limit on n
# Internally, the initial terms of both a and b are taken to be 0, but since this is a number-theoretic function, the output starts at n=1
LAGRANGE:=proc(a, C, M)
local t1, ip, i, j, a1, a2, b, c, N1, N2, Nc;
if whattype(a) <> list then RETURN([]); fi:
# sort a, remove duplicates, include 0
t1:=sort(a);
a1:=sort(convert(convert(a, set), list));
if not member(0, a1) then a1:=[0, op(a1)]; fi;
N1:=nops(a1);
b:=Array(1..M+1, -1);
for i from 1 to N1 while a1[i]<=M do b[a1[i]+1]:=1; od;
a2:=a1; N2:=N1;
for ip from 2 to C do
c:={}:
for i from 1 to N1 while a1[i] <= M do
for j from 1 to N2 while a1[i]+a2[j] <= M do
c:={op(c), a1[i]+a2[j]};
od;
od;
c:=sort(convert(c, list));
Nc:=nops(c);
for i from 1 to Nc do
if b[c[i]+1] = -1 then b[c[i]+1]:= ip; fi;
od;
a2:=c; N2:=Nc;
od;
[seq(b[i], i=2..M+1)];
end;
Q:=[seq((m^3+5*m)/6, m=0..20)];
LAGRANGE(Q, 8, 120);
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 15 2011
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy