login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A209427
T(n,k) = binomial(n,k)^n.
4
1, 1, 1, 1, 4, 1, 1, 27, 27, 1, 1, 256, 1296, 256, 1, 1, 3125, 100000, 100000, 3125, 1, 1, 46656, 11390625, 64000000, 11390625, 46656, 1, 1, 823543, 1801088541, 64339296875, 64339296875, 1801088541, 823543, 1, 1, 16777216, 377801998336, 96717311574016, 576480100000000, 96717311574016, 377801998336, 16777216, 1
OFFSET
0,5
COMMENTS
Row sums equals A167010.
Column 1 forms A000312.
Antidiagonal sums form A209428.
LINKS
EXAMPLE
This triangle begins:
1;
1, 1;
1, 4, 1;
1, 27, 27, 1;
1, 256, 1296, 256, 1;
1, 3125, 100000, 100000, 3125, 1;
1, 46656, 11390625, 64000000, 11390625, 46656, 1;
1, 823543, 1801088541, 64339296875, 64339296875, 1801088541, 823543, 1;
1, 16777216, 377801998336, 96717311574016, 576480100000000, 96717311574016, 377801998336, 16777216, 1; ...
MATHEMATICA
Table[Binomial[n, k]^n, {n, 0, 10}, {k, 0, n}]// Flatten (* G. C. Greubel, Jan 03 2018 *)
PROG
(PARI) {T(n, k)=binomial(n, k)^n}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
Cf. A167010 (row sums), A000312 (column 1), A209428.
Sequence in context: A357744 A088158 A136449 * A140805 A113370 A078536
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Mar 08 2012
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy