Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #22 Sep 10 2016 08:25:05
%S 9,18,45,126,378,1188,3861,12870,43758,151164,529074,1872108,6686100,
%T 12034980,87253605,318219030,1166803110,4298748300,15905368710,
%U 59077083780,220196403180,823343072760,3087536522850,11609137325916,43757517613068,165306177649368
%N Sequence of coefficients of x^(n-4) in marked mesh pattern generating function Q_{n,132}^(0,3,0,0)(x).
%H S. Kitaev, J. Remmel and M. Tiefenbruck, <a href="http://arxiv.org/abs/1201.6243">Marked mesh patterns in 132-avoiding permutations I</a>, arXiv preprint arXiv:1201.6243, 2012
%t QQ0[t, x] = (1 - (1-4*x*t)^(1/2)) ) / (2*x*t); QQ1[t, x] = 1/(1 - t*QQ0[t, x]); QQ2[t, x] = (1 + t*(QQ1[t, x] - QQ0[t, x]))/(1 - t*QQ0[t, x]); QQ3[t, x] = (1 + t*(QQ2[t, x] - QQ0[t, x] + t*(QQ1[t, x] - QQ0[t, x])))/(1 - t*QQ0[t, x]); Simplify[Series[QQ3[t, x], {t, 0, 35}]] (* _Robert Price_, Jun 03 2012 *)
%K nonn
%O 4,1
%A _N. J. A. Sloane_, May 09 2012
%E a(9) corrected by _Robert Price_, Jun 03 2012
%E a(10)-a(35) from _Robert Price_, Jun 03 2012