login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A212442
G.f.: exp( Sum_{n>=1} A002203(n)^3 * x^n/n ), where A002203 is the companion Pell numbers.
4
1, 8, 140, 1864, 26602, 373080, 5253564, 73911192, 1040045475, 14634444720, 205922568360, 2897549559600, 40771618763540, 573700205699920, 8072574516567400, 113589743388536528, 1598328982089075749, 22490195492277648120, 316461065874934143252
OFFSET
0,2
COMMENTS
More generally, exp(Sum_{k>=1} A002203(k)^(2*n+1) * x^k/k) = Product_{k=0..n} 1/(1 - (-1)^(n-k)*A002203(2*k+1)*x - x^2)^binomial(2*n+1,n-k).
Compare to g.f. exp(Sum_{k>=1} A002203(k) * x^k/k) = 1/(1-2*x-x^2).
LINKS
FORMULA
G.f.: 1 / ( (1+2*x-x^2)^3 * (1-14*x-x^2) ).
G.f.: 1 / Product_{n>=1} (1 - A002203(n)*x^n + (-1)^n*x^(2*n))^A212443(n) where A212443(n) = (1/n)*Sum_{d|n} moebius(n/d)*A002203(d)^2.
a(0)=1, a(1)=8, a(2)=140, a(3)=1864, a(4)=26602, a(5)=373080, a(6)=5253564, a(7)=73911192, a(n) = 8*a(n-1) + 76*a(n-2) + 136*a(n-3) - 38*a(n-4) - 136*a(n-5) + 76*a(n-6) - 8*a(n-7) - a(n-8). - Harvey P. Dale, Feb 15 2015
EXAMPLE
G.f.: A(x) = 1 + 8*x + 140*x^2 + 1864*x^3 + 26602*x^4 + 373080*x^5 + ...
where
log(A(x)) = 2^3*x + 6^3*x^2/2 + 14^3*x^3/3 + 34^3*x^4/4 + 82^3*x^5/5 + 198^3*x^6/6 + 478^3*x^7/7 + 1154^3*x^8/8 + ... + A002203(n)^3*x^n/n + ...
Also, the g.f. equals the infinite product:
A(x) = 1/( (1-2*x-x^2)^4 * (1-6*x^2+x^4)^16 * (1-14*x^3-x^6)^64 * (1-34*x^4+x^8)^280 * (1-82*x^5-x^10)^1344 * (1-198*x^6+x^12)^6496 * ... * (1 - A002203(n)*x^n + (-1)^n*x^(2*n))^A212443(n) * ...).
The exponents in these products begin:
A212443 = [4, 16, 64, 280, 1344, 6496, 32640, 166320, 862400, ...].
The companion Pell numbers begin (at offset 1):
A002203 = [2, 6, 14, 34, 82, 198, 478, 1154, 2786, 6726, 16238, ...].
MATHEMATICA
CoefficientList[Series[1/((1+2x-x^2)^3(1-14x-x^2)), {x, 0, 30}], x] (* or *) LinearRecurrence[{8, 76, 136, -38, -136, 76, -8, -1}, {1, 8, 140, 1864, 26602, 373080, 5253564, 73911192}, 30] (* Harvey P. Dale, Feb 15 2015 *)
PROG
(PARI) /* Subroutine for the PARI programs that follow: */
{A002203(n)=polcoeff(2*x*(1+x)/(1-2*x-x^2+x*O(x^n)), n)}
(PARI) /* G.F. by Definition: */
{a(n)=polcoeff(exp(sum(k=1, n, A002203(k)^3*x^k/k)+x*O(x^n)), n)}
(PARI) /* G.F. as a Finite Product: */
{a(n, m=1)=polcoeff(prod(k=0, m, 1/(1 - (-1)^(m-k)*A002203(2*k+1)*x - x^2+x*O(x^n))^binomial(2*m+1, m-k)), n)}
(PARI) /* G.F. as an Infinite Product: */
{A212443(n)=(1/n)*sumdiv(n, d, moebius(n/d)*A002203(d)^2)}
{a(n)=polcoeff(1/prod(m=1, n, (1 - A002203(m)*x^m + (-1)^m*x^(2*m) +x*O(x^n))^A212443(m)), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 17 2012
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy