login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A217899
O.g.f.: Sum_{n>=1} (n^2)^(n-1) * exp(-n^2*x) * x^n / n!.
12
1, 1, 6, 65, 1050, 22827, 627396, 20912320, 820784250, 37112163803, 1900842429486, 108823356051137, 6888836057922000, 477898618396288260, 36060660300744309600, 2940812098256837097720, 257780560811305783833450, 24171700822696604400643035, 2414448376056191692970387250
OFFSET
1,3
COMMENTS
For n>1, a(n) is the number of set partitions of [2*n-2] into n blocks, i.e., Stirling2(2*n-2, n). E.g., a(3) = 6: [12|3|4, 13|2|4, 1|23|4, 14|2|3, 1|24|3, 1|2|34]. - Yuchun Ji, Jan 12 2021
LINKS
FORMULA
a(n) = (1/n!) * Sum_{k=1..n} (-1)^(n-k) * binomial(n,k) * (k^2)^(n-1).
a(n) = [x^n] x + x^2/Product_{k=1..n} (1-k*x).
a(n) = [x^n] x + x^2*(1+x)^(2*n-3) / Product_{k=1..n-1} (1-k*x).
a(n) = Sum_{j=0..n-1} binomial(2*n-1,j)*Stirling2(2*n-j-1,n). - Vladimir Kruchinin, Jun 14 2013
a(n) ~ 2^(2*n-5/2) * n^(n-5/2) / (sqrt(Pi*(1-c)) * exp(n) * c^n *(2-c)^(n-2)), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599... . - Vaclav Kotesovec, May 20 2014
EXAMPLE
O.g.f.: A(x) = x + x^2 + 6*x^3 + 65*x^4 + 1050*x^5 + 22827*x^6 + 627396*x^7 + ... where A(x) = 1^0*x*exp(-1*x) + 2^2*exp(-2^2*x)*x^2/2! + 3^4*exp(-3^2*x)*x^3/3! + 4^6*exp(-4^2*x)*x^4/4! + 5^8*exp(-5^2*x)*x^5/5! + ... simplifies to a power series in x with integer coefficients.
MATHEMATICA
a[n_] := Sum[ Binomial[2*n - 3, j]*StirlingS2[2*n - j - 3, n-1], {j, 0, n-2}]; a[1] = 1; Table[a[n], {n, 1, 19}] (* Jean-François Alcover, Jun 14 2013, after Vladimir Kruchinin *)
PROG
(PARI) {a(n)=polcoeff(sum(m=1, n, (m^2)^(m-1)*x^m*exp(-m^2*x+x*O(x^n))/m!), n)}
(PARI) {a(n)=1/n!*sum(k=1, n, (-1)^(n-k)*binomial(n, k)*(k^2)^(n-1))}
(PARI) {a(n)=polcoeff(x+x^2/prod(k=1, n, 1-k*x +x*O(x^n)), n)}
(PARI) {a(n)=polcoeff(x+x^2*(1+x)^(2*n-3)/prod(k=0, n-1, 1-k*x +x*O(x^n)), n)}
for(n=1, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 14 2012
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy