login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A220477
Total number of parts in all partitions of n with at least one distinct part.
5
0, 0, 2, 5, 14, 23, 46, 71, 115, 174, 263, 371, 542, 756, 1044, 1432, 1947, 2605, 3478, 4588, 6020, 7863, 10182, 13114, 16820, 21480, 27254, 34489, 43423, 54491, 68103, 84864, 105318, 130408, 160828, 197923, 242774, 297141, 362531, 441456, 536062, 649695
OFFSET
1,3
COMMENTS
Also total number of parts in all partitions of n minus the sum of divisors of n. Also sum of largest parts of all partitions of n minus the sum of divisors of n.
LINKS
FORMULA
a(n) = A006128(n) - A000203(n).
G.f.: Q(0)/(1-x), where Q(k)= 1 - prod(n=1..k+1, (1-x^n))/( 1 - (x^(k+1)) - x*(1- (x^(k+1)))^2*(k+2)/( x*(1- (x^(k+1)))*(k+2) - (k+1)*(1 - (x^(k+2)))*prod(n=1..k+1, (1-x^n) )/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 16 2013
EXAMPLE
For n = 6
-----------------------------------------------------
Partitions of 6 Value
-----------------------------------------------------
6 .......................... 0 (all parts are equal)
5 + 1 ...................... 2
4 + 2 ...................... 2
4 + 1 + 1 .................. 3
3 + 3 ...................... 0 (all parts are equal)
3 + 2 + 1 .................. 3
3 + 1 + 1 + 1 .............. 4
2 + 2 + 2 .................. 0 (all parts are equal)
2 + 2 + 1 + 1 .............. 4
2 + 1 + 1 + 1 + 1 .......... 5
1 + 1 + 1 + 1 + 1 + 1 ...... 0 (all parts are equal)
-----------------------------------------------------
The sum of the values is 23
On the other hand the total number of parts of the partitions of 6 is A006128(6) = 35 and the sum of divisor of 6 is 1 + 2 + 3 + 6 = sigma(6) = A000203(6) = 12 equals the total number of parts of the partitions of 6 into equal parts. So a(6) = 35 - 12 = 23.
MAPLE
b:= proc(n, i) option remember; local f, g;
if n=0 or i=1 then [1, n]
else f, g:= b(n, i-1), `if`(i>n, [0$2], b(n-i, i));
[f[1]+g[1], f[2]+g[2] +g[1]]
fi
end:
a:= n-> b(n, n)[2] -numtheory[sigma](n):
seq(a(n), n=1..50); # Alois P. Heinz, Jan 17 2013
MATHEMATICA
a[n_] := Sum[DivisorSigma[0, k]*PartitionsP[n-k], {k, 1, n}] - DivisorSigma[1, n]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Oct 22 2015 *)
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Jan 16 2013
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy