login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A224002
Number of 4 X n 0..2 arrays with antidiagonals unimodal and rows and diagonals nondecreasing.
1
81, 793, 2980, 7927, 17929, 36845, 71061, 130767, 231730, 397675, 663404, 1078800, 1713877, 2665051, 4062821, 6081063, 8948154, 12960157, 18496312, 26037092, 36185097, 49689073, 67471357, 90659063, 120619338, 158999031, 207769132
OFFSET
1,1
COMMENTS
Row 4 of A223999.
LINKS
FORMULA
Empirical: a(n) = (1/2880)*n^8 + (1/180)*n^7 + (25/288)*n^6 + (169/180)*n^5 + (18649/2880)*n^4 + (4247/90)*n^3 + (2719/16)*n^2 - (6649/30)*n - 17 for n>4.
Conjectures from Colin Barker, Aug 25 2018: (Start)
G.f.: x*(81 + 64*x - 1241*x^2 + 2851*x^3 - 2540*x^4 + 248*x^5 + 1398*x^6 - 1380*x^7 + 796*x^8 - 347*x^9 + 88*x^10 - x^11 - 3*x^12) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>13.
(End)
EXAMPLE
Some solutions for n=3:
..0..0..1....1..1..1....0..0..1....0..1..1....0..1..2....1..1..1....0..1..1
..0..2..2....1..1..1....0..1..1....1..1..1....0..1..1....1..1..2....1..1..1
..1..1..2....0..1..2....0..0..1....1..2..2....0..0..2....0..2..2....0..1..1
..1..2..2....0..0..1....0..0..0....0..2..2....0..0..1....2..2..2....0..0..1
CROSSREFS
Cf. A223999.
Sequence in context: A066431 A206086 A356534 * A253461 A247842 A273233
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 30 2013
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy