OFFSET
1,3
COMMENTS
This is an inverse problem (but not an inverse value) to the one leading to A231986: what is the side s of a spherical square (in radians, rad) if it covers a given solid angle (in steradians, sr)? The solution (inverse of the formula in A231896) is s = 2*arcsin(sqrt(sin(Omega/4))). In this particular case, Omega = 1.
LINKS
Stanislav Sykora, Table of n, a(n) for n = 1..2000
Wikipedia, Solid angle, Section 3.3 (Pyramid).
Wikipedia, Steradian.
FORMULA
Equals 2*arcsin(sqrt(sin(1/4))).
EXAMPLE
1.041191803606873340234607533592568788900696676006087134915230281312997...
MATHEMATICA
RealDigits[2*ArcSin[Sqrt[Sin[1/4]]], 10, 120][[1]] (* Amiram Eldar, Jun 06 2023 *)
PROG
(PARI)
default(realprecision, 120);
2*asin(sqrt(sin(1/4))) \\ or
solve(x = 1, 2, 4*asin((sin(x/2))^2) - 1) \\ least positive solution - Rick L. Shepherd, Jan 28 2014
CROSSREFS
KEYWORD
AUTHOR
Stanislav Sykora, Nov 17 2013
EXTENSIONS
Formula and comment corrected by Rick L. Shepherd, Jan 28 2014
STATUS
approved