login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A261278
Expansion of eta(q^3)^8 + 4 * eta(q^6)^8 in powers of q.
2
1, 4, 0, -8, 0, 0, 20, -32, 0, 0, 0, 0, -70, 80, 0, 64, 0, 0, 56, 0, 0, 0, 0, 0, -125, -280, 0, -160, 0, 0, 308, 256, 0, 0, 0, 0, 110, 224, 0, 0, 0, 0, -520, 0, 0, 0, 0, 0, 57, -500, 0, 560, 0, 0, 0, -640, 0, 0, 0, 0, 182, 1232, 0, -512, 0, 0, -880, 0, 0, 0, 0
OFFSET
1,2
LINKS
FORMULA
a(n) is multiplicative with a(2^(2*k)) = (-8)^k, a(2^(2*k+1)) = 4 * (-8)^k, a(3^e) = 0^e, a(p^(2*k)) = (-p)^(3^k) and a(p^(2*k+1)) = 0 if p == 5 (mod 6), a(p^e) = a(p) * a(p^(e-1)) - p^3 * a(p^(e-2)) if p == 1 (mod 6).
a(3*n) = a(6*n + 5) = 0. a(3*n + 1) = A000731(n). a(4*n) = -8 * a(n). a(6*n + 1) = A153728(n).
Convolution square of A261277.
EXAMPLE
G.f. = x + 4*x^2 - 8*x^4 + 20*x^7 - 32*x^8 - 70*x^13 + 80*x^14 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ x QPochhammer[ x^3]^8 + 4 x^2 QPochhammer[ x^6]^8, {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^3 + A)^8 + 4 * x * eta(x^6 + A)^8, n))};
(Magma) A := Basis( CuspForms( Gamma0(18), 4), 72); A[1] + 4*A[2] - 8*A[4];
(Sage) A = CuspForms( Gamma0(18), 4, prec=20).basis(); A[0] + 4*A[1] - 8*A[3];
CROSSREFS
KEYWORD
sign,mult
AUTHOR
Michael Somos, Aug 14 2015
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy