login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A273401
Numbers n such that n and n + 1 have exactly the same number of odd divisors.
4
1, 5, 6, 10, 11, 12, 13, 19, 22, 23, 28, 37, 40, 43, 46, 47, 49, 52, 54, 58, 61, 65, 67, 69, 73, 77, 79, 82, 84, 88, 96, 103, 106, 110, 112, 114, 119, 129, 132, 136, 140, 148, 151, 154, 155, 157, 163, 166, 172, 178, 182, 185, 186, 191, 192, 193, 203, 204, 211, 215, 216, 219, 220, 221
OFFSET
1,2
COMMENTS
If A001227(n) = A001227(n*2^m) for m >= 0 then:
1) A001227(n) is equal to number of ways to write 2n - 1 as (4*x + 2)*y + 4*x + 1 where x and y are nonnegative integers;
2) A001227(n) is equal to number of distinct values of k if k/(2n-1) + 1 divides (k/(2n - 1))^(k/(2n - 1)) + k, (k/(2n - 1))^k + k/(2n - 1) and k^(k/(2n - 1)) + k/(2n - 1).
LINKS
EXAMPLE
5 and 6 have both two odd divisors: (1 and 5) and (1 and 3) respectively; so 5 is a term in the sequence.
MAPLE
A001227:= n -> numtheory:-tau(n)/(1+padic:-ordp(n, 2)):
R:= map(A001227, [$1..1000]):
ListTools:-SearchAll(0, A001227[2..-1]-A001227[1..-2]); # Robert Israel, May 27 2016
MATHEMATICA
Select[Range@ 221, First@ Differences@ Map[Count[Divisors@ #, _?OddQ] &, {#, # + 1}] == 0 &] (* Michael De Vlieger, Jun 26 2016 *)
SequencePosition[Table[Count[Divisors[n], _?OddQ], {n, 250}], {x_, x_}] [[All, 1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 06 2019 *)
PROG
(PARI) lista(nn) = for (n=1, nn, if (sumdiv(n, d, d%2) == sumdiv(n+1, d, d%2), print1(n, ", "))); \\ Michel Marcus, May 27 2016
(PARI) is(n)=numdiv(n>>valuation(n, 2))==numdiv((n+1)>>valuation(n+1, 2)) \\ Charles R Greathouse IV, Jul 15 2016
CROSSREFS
Cf. A001227, A206581 (primes in a(n)).
Sequence in context: A189056 A340325 A247561 * A042958 A265188 A163903
KEYWORD
nonn
AUTHOR
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy