login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A276723
Number of set partitions of [n] such that for each block b the smallest integer interval containing b has at most seven elements.
6
1, 1, 2, 5, 15, 52, 203, 877, 3263, 11155, 36810, 120635, 398736, 1340561, 4605989, 15908448, 54826671, 188085307, 642431001, 2188102307, 7446095610, 25366540627, 86531467800, 295449388797, 1009134603216, 3446558809107, 11767813404774, 40167156826109
OFFSET
0,3
LINKS
Pierpaolo Natalini, Paolo Emilio Ricci, New Bell-Sheffer Polynomial Sets, Axioms 2018, 7(4), 71.
FORMULA
G.f.: -(x^52 +2*x^50 -9*x^49 +5*x^48 +93*x^47 -46*x^46 -18*x^45 -439*x^44 +166*x^43 +919*x^42 -369*x^41 +1431*x^40 -2154*x^39 +1497*x^38 +2366*x^37 +7382*x^36 +4861*x^35 +3348*x^34 -12721*x^33 +1916*x^32 -7481*x^31 +8799*x^30 +8061*x^29 +10105*x^28 -8760*x^27 +3274*x^26 -9925*x^25 -873*x^24 +8803*x^23 +13626*x^22 -2818*x^21 +2263*x^20 +3291*x^19 -5707*x^18 -3550*x^17 -4115*x^16 -2399*x^15 -2475*x^14 -877*x^13 +461*x^12 +130*x^11 +226*x^10 +182*x^9 +243*x^8 +161*x^7 -4*x^6 +21*x^5 +14*x^4 +5*x^3 +2*x^2 -1) / (x^64 +6*x^63 +3*x^62 -2*x^61 -24*x^60 +7*x^59 +981*x^58 +2410*x^57 +1066*x^56 -2882*x^55 -8931*x^54 -2882*x^53 -4007*x^52 -30225*x^51 -9863*x^50 +20863*x^49 +101214*x^48 +127153*x^47 +158805*x^46 +285147*x^45 +101665*x^44 -513829*x^43 -895778*x^42 -800589*x^41 -572933*x^40 +290605*x^39 +232843*x^38 -841969*x^37 -1610201*x^36 -1642130*x^35 -1731114*x^34 -642745*x^33 +245579*x^32 -62183*x^31 -769603*x^30 -803729*x^29 -905469*x^28 -727539*x^27 -323095*x^26 -229154*x^25 -442563*x^24 -447061*x^23 -251676*x^22 -41018*x^21 -74736*x^20 -74741*x^19 +35465*x^18 +81095*x^17 +72575*x^16 +39983*x^15 +23409*x^14 +14506*x^13 +3868*x^12 -628*x^11 -1927*x^10 -1426*x^9 -935*x^8 -468*x^7 -31*x^6 -20*x^5 -13*x^4 -5*x^3 -3*x^2 -x +1).
CROSSREFS
Column k=7 of A276719.
Sequence in context: A192855 A148092 A343667 * A287585 A287278 A287256
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Sep 16 2016
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy