login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281804
Number of 3Xn 0..1 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.
1
0, 9, 75, 372, 1725, 7293, 29665, 116539, 442210, 1649985, 6023148, 21692828, 77107557, 271088870, 944377886, 3262534584, 11190762816, 38140286571, 129245999168, 435739937780, 1462231704463, 4886245700669, 16265366134625
OFFSET
1,2
COMMENTS
Row 3 of A281802.
LINKS
FORMULA
Empirical: a(n) = 9*a(n-1) -3*a(n-2) -165*a(n-3) +174*a(n-4) +1857*a(n-5) -1933*a(n-6) -15003*a(n-7) +11664*a(n-8) +91286*a(n-9) -42282*a(n-10) -427488*a(n-11) +80567*a(n-12) +1573155*a(n-13) +37911*a(n-14) -4670352*a(n-15) -843348*a(n-16) +11478699*a(n-17) +3372685*a(n-18) -23861544*a(n-19) -8964180*a(n-20) +42660411*a(n-21) +18538695*a(n-22) -66430137*a(n-23) -31623950*a(n-24) +90929253*a(n-25) +45829935*a(n-26) -110111412*a(n-27) -57390339*a(n-28) +118455852*a(n-29) +62728989*a(n-30) -113449548*a(n-31) -60198156*a(n-32) +96763954*a(n-33) +50864487*a(n-34) -73397949*a(n-35) -37857341*a(n-36) +49356480*a(n-37) +24779649*a(n-38) -29276919*a(n-39) -14214696*a(n-40) +15212211*a(n-41) +7107536*a(n-42) -6860061*a(n-43) -3073962*a(n-44) +2652939*a(n-45) +1137840*a(n-46) -866208*a(n-47) -355300*a(n-48) +233904*a(n-49) +91755*a(n-50) -50774*a(n-51) -19062*a(n-52) +8502*a(n-53) +3061*a(n-54) -1029*a(n-55) -357*a(n-56) +80*a(n-57) +27*a(n-58) -3*a(n-59) -a(n-60)
EXAMPLE
Some solutions for n=4
..0..0..0..0. .0..0..1..0. .0..1..1..1. .0..0..0..1. .0..0..0..1
..1..0..1..1. .1..1..0..1. .1..1..0..1. .1..1..1..1. .1..1..1..0
..1..1..1..1. .1..0..0..0. .1..1..1..0. .0..1..1..1. .0..1..0..0
CROSSREFS
Cf. A281802.
Sequence in context: A321234 A339483 A274311 * A210045 A125397 A095249
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 30 2017
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy