login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A282342
a(n) is the smallest prime number, with sum of digits equals n and a(n) is greater than previous nonzero terms, except if this is not possible in which case a(n)=0
0
0, 2, 3, 13, 23, 0, 43, 53, 0, 73, 83, 0, 139, 149, 0, 277, 359, 0, 379, 389, 0, 499, 599, 0, 997, 1889, 0, 1999, 2999, 0, 4999, 6899, 0, 17989, 18899, 0, 29989, 39989, 0, 49999, 59999, 0, 79999, 98999, 0, 199999, 389999, 0, 598999, 599999, 0, 799999, 989999, 0, 2998999
OFFSET
1,2
COMMENTS
I conjecture that there are prime numbers for every n, if n is not divisible by 3.
Other terms:
a(97) = 79999999999;
a(98) = 98999999999;
a(100) = 298999999999;
a(1000) = 299989999999999999999999999999999999999999999999999999999999999999
9999999999999999999999999999999999999999999999.
EXAMPLE
a(23) = 599 because 599 is a prime number greater than a(22) = 499 and the sum of its digits is 5 + 9 + 9 = 23.
a(24) = 0 because 24 (mod 3) = 0.
MATHEMATICA
a = {1}; Do[If[n != 3 && Divisible[n, 3], AppendTo[a, 0], p = NextPrime@ Max@ a; While[Total@ IntegerDigits@ p != n, p = NextPrime@ p]; AppendTo[a, p]], {n, 2, 57}]; a (* Michael De Vlieger, Feb 12 2017 *)
PROG
(PARI) {
print1(0", "2", ");
n=3; p=3; sp=3;
while(p<1000000,
while(sp<>n,
p=nextprime(p+1);
sp=sumdigits(p);
);
print1(p", ");
n++; if(n%3==0, n++; print1(0", "));
)
}
CROSSREFS
Cf. A067180.
Sequence in context: A138699 A341713 A077248 * A137248 A355438 A358427
KEYWORD
nonn,base
AUTHOR
Dimitris Valianatos, Feb 12 2017
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy