login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A292505
Number of complete orderless tree-factorizations of n >= 2.
17
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1, 9, 1, 1, 2, 3, 1, 4, 1, 12, 1, 1, 1, 12, 1, 1, 1, 9, 1, 4, 1, 3, 3, 1, 1, 29, 1, 3, 1, 3, 1, 9, 1, 9, 1, 1, 1, 17, 1, 1, 3, 33, 1, 4, 1, 3, 1, 4, 1, 44, 1, 1, 3, 3, 1, 4, 1, 29, 5, 1, 1, 17, 1
OFFSET
2,7
COMMENTS
An orderless tree-factorization (see A292504 for definition) is complete if all leaves are prime numbers. This sequence first differs from A281119 at a(64)=33.
a(n) depends only on the prime signature of n. - Andrew Howroyd, Nov 18 2018
LINKS
FORMULA
a(p^n) = A000669(n) for prime p. - Andrew Howroyd, Nov 18 2018
EXAMPLE
The a(60)=17 complete orderless tree-factorizations are: (2(2(35))), (2(3(25))), (2(5(23))), (2(235)), (3(2(25))), (3(5(22))), (3(225)), (5(2(23))), (5(3(22))), (5(223)), ((22)(35)), ((23)(25)), (22(35)), (23(25)), (25(23)), (35(22)), (2235).
MATHEMATICA
postfacs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[postfacs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
oltfacs[n_]:=If[n<=1, {{}}, Prepend[Union@@Function[q, Sort/@Tuples[oltfacs/@q]]/@DeleteCases[postfacs[n], {n}], n]];
Table[Length[Select[oltfacs[n], FreeQ[#, _Integer?(!PrimeQ[#]&)]&]], {n, 2, 100}]
PROG
(PARI) seq(n)={my(v=vector(n), w=vector(n)); v[1]=1; for(k=2, n, w[k]=v[k]+isprime(k); forstep(j=n\k*k, k, -k, my(i=j, e=0); while(i%k==0, i/=k; e++; v[j]+=binomial(e+w[k]-1, e)*v[i]))); w[2..n]} \\ Andrew Howroyd, Nov 18 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 17 2017
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy