login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A294344
a(n) = ((-9*n + 82)*10^n - 1)/81.
2
1, 9, 79, 679, 5679, 45679, 345679, 2345679, 12345679, 12345679, -987654321, -20987654321, -320987654321, -4320987654321, -54320987654321, -654320987654321, -7654320987654321, -87654320987654321, -987654320987654321, -10987654320987654321, -120987654320987654321
OFFSET
0,2
FORMULA
From Colin Barker, Oct 29 2017: (Start)
G.f.: (1 - 12*x + 10*x^2) / ((1 - x)*(1 - 10*x)^2).
a(n) = 21*a(n-1) - 120*a(n-2) + 100*a(n-3) for n>2.
(End)
EXAMPLE
Curious multiplications:
9 * 8 = 72;
79 * 8 = 632;
679 * 8 = 5432;
5679 * 8 = 45432;
45679 * 8 = 365432;
345679 * 8 = 2765432;
2345679 * 8 = 18765432.
9 * 9 = 81;
79 * 9 = 711;
679 * 9 = 6111;
5679 * 9 = 51111;
45679 * 9 = 411111;
345679 * 9 = 3111111;
2345679 * 9 = 21111111.
MATHEMATICA
LinearRecurrence[{21, -120, 100}, {1, 9, 79}, 30] (* Harvey P. Dale, Mar 12 2018 *)
PROG
(PARI) Vec((1 - 12*x + 10*x^2) / ((1 - x)*(1 - 10*x)^2) + O(x^30)) \\ Colin Barker, Oct 29 2017
CROSSREFS
Cf. A294328.
Sequence in context: A293721 A198857 A126632 * A125909 A125421 A163445
KEYWORD
sign,easy
AUTHOR
Seiichi Manyama, Oct 28 2017
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy