login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A295593
Numbers k such that Bernoulli number B_{k} has denominator 230010.
1
80, 160, 320, 13360, 17840, 18160, 20560, 25360, 26720, 28240, 30640, 35680, 36320, 36560, 41120, 43280, 45520, 46960, 50720, 52880, 56480, 60080, 61280, 69040, 70960, 71360, 72560, 72640, 79280, 84080, 87760, 91040, 92240, 93040, 93680, 93920, 94480, 97040, 97360
OFFSET
1,1
COMMENTS
230010 = 2*3*5*11*17*41.
All terms are multiples of a(1) = 80.
For these numbers numerator(B_{k}) mod denominator(B_{k}) = 182293.
LINKS
EXAMPLE
Bernoulli B_{80} is
-4603784299479457646935574969019046849794257872751288919656867/230010, hence 80 is in the sequence.
MAPLE
with(numtheory): P:=proc(q, h) local n; for n from 2 by 2 to q do
if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6, 230010);
# Alternative: # according to Robert Israel code in A282773
with(numtheory): filter:= n ->
select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 5, 11, 17, 41}:
select(filter, [seq(i, i=1..10^5)]);
KEYWORD
nonn,easy
AUTHOR
Paolo P. Lava, Nov 24 2017
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy