login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A297928
a(n) = 2*4^n + 3*2^n - 1.
2
4, 13, 43, 151, 559, 2143, 8383, 33151, 131839, 525823, 2100223, 8394751, 33566719, 134242303, 536920063, 2147581951, 8590131199, 34360131583, 137439739903, 549757386751, 2199026401279, 8796099313663, 35184384671743, 140737513521151, 562950003752959, 2251799914348543
OFFSET
0,1
COMMENTS
For n > 0, in binary, this is a 1 followed by n-1 0's followed by 10 followed by n 1's.
FORMULA
G.f.: (4 - 15*x + 8*x^2)/((1 - x)*(1 - 2*x)*(1 - 4*x)).
E.g.f.: 2*e^(4*x) + 3*e^(2*x) - e^x.
a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3), n > 2.
a(n) = A000918(n) + A085601(n).
EXAMPLE
a(0) = 2*4^0 + 3*2^0 - 1 = 4; in binary, 100.
a(1) = 2*4^1 + 3*2^1 - 1 = 13; in binary, 1101.
a(2) = 2*4^2 + 3*2^2 - 1 = 43; in binary, 101011.
a(3) = 2*4^3 + 3*2^3 - 1 = 151; in binary, 10010111.
a(4) = 2*4^4 + 3*2^4 - 1 = 559; in binary, 1000101111.
...
MATHEMATICA
Table[2 4^n+3 2^n-1, {n, 0, 30}] (* or *) LinearRecurrence[{7, -14, 8}, {4, 13, 43}, 30] (* Harvey P. Dale, Apr 22 2018 *)
PROG
(PARI) a(n) = 2*4^n + 3*2^n - 1
(PARI) first(n) = Vec((4 - 15*x + 8*x^2)/((1 - x)*(1 - 2*x)*(1 - 4*x)) + O(x^n))
CROSSREFS
A lower bound for A296807.
Sequence in context: A188176 A003688 A033434 * A363366 A113986 A149426
KEYWORD
nonn,easy
AUTHOR
Iain Fox, Jan 08 2018
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy