login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A300591
O.g.f. A(x) satisfies: [x^n] exp( n^2 * A(x) ) = n^2 * [x^(n-1)] exp( n^2 * A(x) ) for n>=1.
14
1, 2, 27, 736, 30525, 1715454, 123198985, 10931897664, 1172808994833, 149774206572050, 22487782439633786, 3927856758905547936, 790620718368726490063, 181836026214536919343314, 47416473117145116482171400, 13920906749656695367066255360, 4572270908185359745686931830057, 1670388578072378805032472463218378, 675225859431899136993903503004997481, 300576566118865697499246162737030656800
OFFSET
1,2
COMMENTS
Compare to: [x^n] exp( n^2 * x ) = n * [x^(n-1)] exp( n^2 * x ) for n>=1.
It is conjectured that this sequence consists entirely of integers.
a(n) is divisible by n (conjecture): A300598(n) = a(n)/n for n>=1.
LINKS
FORMULA
O.g.f. equals the logarithm of the e.g.f. of A300590.
a(n) ~ c * n!^2 * n^2, where c = 0.1354708370957778563796... - Vaclav Kotesovec, Oct 13 2020
EXAMPLE
O.g.f.: A(x) = x + 2*x^2 + 27*x^3 + 736*x^4 + 30525*x^5 + 1715454*x^6 + 123198985*x^7 + 10931897664*x^8 + 1172808994833*x^9 + 149774206572050*x^10 + ...
where
exp(A(x)) = 1 + x + 5*x^2/2! + 175*x^3/3! + 18385*x^4/4! + 3759701*x^5/5! + 1258735981*x^6/6! + 630063839035*x^7/7! + 445962163492385*x^8/8! + ... + A300590(n)*x^n/n! + ...
such that: [x^n] exp( n^2 * A(x) ) = n^2 * [x^(n-1)] exp( n^2 * A(x) ).
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^((#A-1)^2)); A[#A] = ((#A-1)^2*V[#A-1] - V[#A])/(#A-1)^2 ); polcoeff( log(Ser(A)), n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 09 2018
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy