login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A300930
T(n,k)=Number of nXk 0..1 arrays with every element equal to 1, 2, 3, 4 or 5 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.
7
0, 1, 1, 1, 3, 1, 2, 11, 11, 2, 3, 37, 75, 37, 3, 5, 129, 508, 508, 129, 5, 8, 450, 3447, 6638, 3447, 450, 8, 13, 1568, 23404, 87561, 87561, 23404, 1568, 13, 21, 5464, 158855, 1155263, 2244335, 1155263, 158855, 5464, 21, 34, 19041, 1078231, 15238332
OFFSET
1,5
COMMENTS
Table starts
..0.....1.......1..........2............3...............5..................8
..1.....3......11.........37..........129.............450...............1568
..1....11......75........508.........3447...........23404.............158855
..2....37.....508.......6638........87561.........1155263...........15238332
..3...129....3447......87561......2244335........57594572.........1477281166
..5...450...23404....1155263.....57594572......2875574552.......143498589629
..8..1568..158855...15238332...1477281166....143498589629.....13930396115571
.13..5464.1078231..200997959..37892542998...7160975085336...1352339873296663
.21.19041.7318522.2651226860.971951600750.357354070296570.131283287305824217
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 4*a(n-1) -2*a(n-2) +a(n-3) -a(n-4) for n>5
k=3: [order 8] for n>10
k=4: [order 26] for n>27
k=5: [order 64] for n>67
EXAMPLE
Some solutions for n=5 k=4
..0..1..1..1. .0..1..1..1. .0..0..1..0. .0..0..1..1. .0..0..1..0
..0..1..0..1. .0..1..0..0. .1..1..0..0. .0..0..1..0. .0..1..0..0
..0..1..0..1. .1..1..0..0. .0..0..1..0. .0..0..1..0. .0..1..1..0
..1..1..1..0. .1..1..1..1. .1..1..0..0. .0..0..1..1. .1..1..1..1
..1..0..0..0. .1..0..0..1. .1..0..0..0. .1..1..1..1. .1..0..0..0
CROSSREFS
Column 1 is A000045(n-1).
Column 2 is A232031(n-1).
Sequence in context: A180771 A300546 A300973 * A109528 A136125 A092580
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 15 2018
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy