login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A302117
a(n) = 4*(n-1)*a(n-1) - (1/3)*Product_{k=0..n-1} (2*k-3), with a(0) = 0.
2
0, 1, 3, 23, 273, 4353, 86955, 2085975, 58396905, 1868565825, 67266342675, 2690619247575, 118386592164225, 5682542674572225, 295491902843612475, 16547538653388717975, 992852105745276401625, 63542528577414336074625, 4320891751365390890563875
OFFSET
0,3
LINKS
Travis Sherman, Summation of Glaisher- and Apery-like Series, University of Arizona, May 23 2000, p. 11, (3.58) - (3.62).
FORMULA
a(n) = (f1(n)/(2*n-1))*(2*Product_{k=0..n-1} (2*k+1)), where f1(n) corresponds to the x values such that Sum_{k>=0} 2^k/(binomial(2*k,k)*(2*k+(2*n-1))) = x*Pi + y. (See examples for connection with a(n) in terms of material at Links section).
From Robert Israel, Apr 12 2018: (Start)
3*a(n+2) - (18*n+9)*a(n+1) + 12*n*(2*n-1)*a(n) = 0.
E.g.f.: (1-sqrt(1-2*x))/2 + (arctanh(sqrt(2-4*x)) - arctanh(sqrt(2)))*sqrt(2)/4. (End)
a(n) = (n-1)!*2^(n-1)*Sum_{i=0..n-1} binomial(n-3/2, i) for n > 0 with a(0) = 0. - Mikhail Kurkov, Nov 22 2024
a(n) ~ sqrt(Pi) * n^(n - 1/2) * 2^(2*n-2) / exp(n). - Vaclav Kotesovec, Nov 22 2024
EXAMPLE
Examples ((3.58) - (3.62)) at page 11 in Links section as follows, respectively.
For n=1, f1(1) = 1/2, so a(1) = 1.
For n=2, f1(2) = 3/2, so a(2) = 3.
For n=3, f1(3) = 23/6, so a(3) = 23.
For n=4, f1(4) = 91/10, so a(4) = 273.
For n=5, f1(5) = 1451/70, so a(5) = 4353.
MAPLE
P:= 1: A[0]:= 0:
for n from 1 to 20 do
P:= P*(2*(n-1)-3);
A[n]:= 4*(n-1)*A[n-1]-P/3;
od:
seq(A[i], i=0..20); # Robert Israel, Apr 12 2018
MATHEMATICA
RecurrenceTable[{a[n] == 4*(n-1)*a[n-1] - Product[2*k-3, {k, 0, n-1}]/3, a[0] == 0}, a, {n, 0, 20}] (* Vaclav Kotesovec, Apr 02 2018 *)
nmax = 16; Flatten[{0, Table[CoefficientList[Expand[FunctionExpand[Simplify[ Table[Sum[2^j/(Binomial[2*j, j]*(2*j+(2*m-1))), {j, 0, Infinity}]/((2*m-1)/(2*Product[(2*k+1), {k, 0, m-1}])), {m, 1, nmax}]]]], Pi][[n, 2]], {n, 1, nmax}]}] (* Vaclav Kotesovec, Apr 02 2018 *)
PROG
(PARI) a=vector(20); a[1]=1; for(n=2, #a, a[n]=4*(n-1)*a[n-1]-(1/3)*prod(k=0, n-1, (2*k-3))); concat(0, a) \\ Altug Alkan, Apr 01 2018
(Magma) [n le 1 select n else 4*(n-1)*Self(n) - (1/3)*&*[2*k-3: k in [0..n-1]]: n in [0..20]]; // Bruno Berselli, Apr 12 2018
CROSSREFS
Sequence in context: A004700 A378114 A199544 * A343772 A006555 A357349
KEYWORD
nonn
AUTHOR
Detlef Meya, Apr 01 2018
EXTENSIONS
a(10)-a(11) corrected by and more terms from Altug Alkan, Apr 01 2018
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy